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Abstract

The linguistic analysis of historical German and diachronic syntactic change is traditionally based
on small, manually annotated data sets. As a consequence, such studies lack the generalizability and
statistical significance that quantitative approaches can offer. In this thesis, computational methods
for the automatic syntactic analysis of modern and historical German are developed, which help
to overcome the natural limits of manual annotation and enable the creation of large annotated
data sets. The main goal of the thesis is to identify extraposition in modern and historical German,
with extraposition being defined as the movement of constituents from their base position to the
post-field of the sentence (Höhle 2019; Wöllstein 2018).

For the automatic recognition of extraposition, two annotation steps are combined: (i) a topolog-
ical field analysis for the identification of post-fields and (ii) a constituency analysis to recognize
candidates for extraposition. The thesis describes experiments on topological field parsing (Ort-
mann 2020), chunking (Ortmann 2021a), and constituency parsing (Ortmann 2021b). The best
results are achieved with statistical models trained on Part-of-Speech tags as input. Contrary to
previous studies, all annotation steps are thoroughly evaluated with the newly developed FairEval
method for the fine-grained error analysis and fair evaluation of labeled spans (Ortmann 2022). In
an example analysis, the created methods are applied to large collections of modern and historical
text to explore different factors for the extraposition of relative clauses, demonstrating the practical
value of computational approaches for linguistic studies.

The developedmethods are released as theCLASSIG pipeline (ComputationalLinguisticAnalysis
of Syntactic Structures In German) at https://github.com/rubcompling/cla
ssig-pipeline. Data sets, models, and evaluation results are provided for download at
https://github.com/rubcompling/classig-data and https://doi.org/
10.5281/zenodo.7180973.

https://github.com/rubcompling/classig-pipeline
https://github.com/rubcompling/classig-pipeline
https://github.com/rubcompling/classig-data
https://doi.org/10.5281/zenodo.7180973
https://doi.org/10.5281/zenodo.7180973
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CHAPTER 1

Introduction

Human language is not a static construct but rather is characterized by continuous, dynamic change
on all linguistic levels, from phonetics and phonology to morphology, lexical and semantic change
to syntactic structures (Bybee 2015). The present thesis emerged from a project that deals with the
latter, namely the investigation of syntactic variation in the history of German. In particular, the
focus was on the diachronic development of extraposition. By this, we mean the phenomenon of
constituents being moved from their base position in the middle field to the post-field of the sentence
behind the right sentence bracket. Consider the following examples. Each sentence (1–3a) contains
a different type of constituent that is placed in the post-field (Höhle 2019; Wöllstein 2018; sentence
brackets are marked in boldface, and the extraposed constituents are underlined). In (1–3b), the
same constituents are placed in their base position in the middle field.

(1) a. Hör endlich auf mit dem Quatsch!
b. Hör endlich mit dem Quatsch auf!

‘Stop the nonsense!’

(2) a. Es ist echt schön gewesen gestern.
b. Es ist gestern echt schön gewesen.

‘Yesterday was really nice.’

(3) a. Ich muss die Bücher abholen, die ich bestellt habe.
b. Ich muss die Bücher, die ich bestellt habe, abholen.

‘I have to pick up the books that I ordered.’

Linguistic studies have found that the frequency of extraposition has changed over time (e.g., Schildt
1976). Even though certain constituents can still be extraposed in modern German, as demonstrated
by the examples above, there has been an increasing tendency to realize more and more informa-
tion in the middle field. In the literature, a range of factors is discussed, which may influence
extraposition, including the length and complexity of the extraposed elements, discourse mode, or
informational aspects.
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Chapter 1: Introduction

Our project aimed to investigate whether information density in the sense of Shannon (1948)
plays a relevant role in the (diachronic) development of extraposition. We hypothesized that mov-
ing complex, highly informative constituents to the post-field could be beneficial for sentence pro-
cessing by preventing excess memory strain on the middle field. To test this hypothesis, we man-
ually annotated Early New High German texts with syntactic information to compare properties
of extraposed vs. non-extraposed constituents.1 Studies on this data set suggest that information
density indeed affects extraposition, albeit to varying degrees for different constituents and time
periods (Voigtmann and Speyer 2021a; Voigtmann and Speyer 2021b; Voigtmann and Speyer forth-
coming). One problem, however, is the limited generalizability of the results. Although our data set
is significantly larger than those of previous studies with a total amount of ~1.8 million annotated
tokens, conclusions can be drawn only for specific genres (medicine, theology) and time periods
(17th to 20th century), for which annotated data exists. A more comprehensive investigation is not
possible unless further data is enriched with the necessary information, which would require costly
and time-consuming manual annotation.

In order to address this issue and resolve the ubiquitous lack of data, the goal of my dissertation
project was to explore the automatic identification of extraposition in historical and modern German.
When I first started this venture, it was still uncharted territory. Automatic annotations of historical
German, especially beyond the morpho-syntactic level, are scarce, and the peculiarities of the data
pose several challenges to the application of computational linguistic methods, such as data sparsity,
high variability, and a lack of trained tools and models. With this project, I set out to address
and overcome the inherent challenges of working with historical language with the ultimate goal
of automatically detecting extraposition in texts of arbitrary length from various genres and time
periods.

Along the way, I explored several syntactic annotations and created gold standard data and mod-
els that did not previously exist for historical German. Among other things, I worked on automatic
topological field analysis to detect the post-field in modern and historical German (Ortmann 2020),
and trained freely available models for constituency parsing of Early New High German that can
be used for detecting (potentially) extraposed elements (Ortmann 2021b). Although these were, in
a way, byproducts of my pioneering work, they can serve as a starting point for future projects of
their own. In this thesis, I incorporate them in the order of my exploration and put the puzzle pieces
together to arrive at the final goal of automatically detecting extraposition. In an example appli-
cation, I demonstrate the benefits of the developed methods for linguistic studies by automatically
analyzing different factors for the extraposition of relative clauses.

1The data set is available at https://github.com/rubcompling/C6Samples. All links in this document
were last checked on October 19, 2022.
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Nevertheless, this thesis is only a starting point for the investigation of extraposition and other
diachronic syntactic analyses. Instead of a deep dive into the causes of extraposition, I focused
on laying the foundation for such studies by figuring out what is or is not (yet) possible with the
resources available. In doing so, I adopted a rather pragmatic approach, creating methods and
models of practical value for linguistic research. I shall point out that this exploratory nature of my
project entails that I did not focus on fine-tuning the latest NLP models to improve the results down
to the last detail. The field of computational linguistics is rapidly evolving, and future studies can
experiment with replacing the individual components from this thesis with more accurate tools or
training better models with additional data as it becomes available. I see the main contribution of
this thesis in providing the groundwork for exploring these topics further, raising awareness of the
problems, and suggesting ways for future improvement.

Structure of this Thesis

The remainder of this thesis is structured as follows: Chapter 2 describes the background infor-
mation necessary to follow the contents of this thesis. That includes a more detailed look at the
phenomenon of extraposition and the factors that are hypothesized to influence it, as well as a brief
overview of previous work on the automatic analysis of historical (German) language.

Chapter 3 explains difficulties of working with historical data and introduces the modern and
historical data sets that are used as gold standard and training data for the different annotation
studies.

In Chapter 4, a new evaluation method called FairEval for the evaluation of labeled spans is
presented, which I developed during my dissertation project and which is used to evaluate the
annotations in this thesis.

Chapters 5–7 include the actual annotation studies. Chapters 5 and 6 describe the different
annotations that serve as prerequisites for the recognition of extraposition. Chapter 5 focuses on
topological field analysis with the intention of finding the post-field as the location of extraposed
elements. Chapter 6, aims to identify candidates for extraposition, starting with simple chunks
before shifting to the recognition of more complex phrases and clauses based on a constituency
analysis. Chapter 7 is the heart of this thesis, where all threads come together to identify extraposed
elements for the automatic analysis of extraposition.

To demonstrate the benefits of the developed methods, Chapter 8 provides an example applica-
tion, which takes a quantitative look at different factors that presumably influence the extraposition
of relative clauses, namely length, orality, and information density. The thesis concludes with a
summary and an outlook in Chapter 9.
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Previous Publications

Several of the enlisted chapters are based on previous publications, in particular:

• Chapter 4 corresponds to Ortmann (2022). Fine-Grained Error Analysis and Fair Evaluation
of Labeled Spans. In Proceedings of the 13th Language Resources and Evaluation Conference
(LREC). Marseille, France, pp. 1400–1407.

• Chapter 5 is based on the study from Ortmann (2020). Automatic Topological Field Identi-
fication in (Historical) German Texts. In Proceedings of the The 4th Joint SIGHUM Workshop
on Computational Linguistics for Cultural Heritage, Social Sciences, Humanities and Literature
(LaTeCH-CLfL). Barcelona, Spain (online), pp. 10–18.

• Chapter 6.1 corresponds to Ortmann (2021a). Chunking Historical German. In Proceedings
of the 23rd Nordic Conference on Computational Linguistics (NoDaLiDa). Reykjavik, Iceland
(online), pp. 190–199.

• Chapter 6.2 corresponds to Ortmann (2021b). Automatic Phrase Recognition in Historical
German. In Proceedings of the 17th Conference on Natural Language Processing (KONVENS
2021). Düsseldorf, Germany, pp. 127–136.

I will also refer to several joint publications with Stefanie Dipper on the automatic identification of
orality:

• Ortmann and Dipper (2019). Variation between Different Discourse Types: Literate vs. Oral.
In Proceedings of the NAACL-Workshop on NLP for Similar Languages, Varieties and Dialects
(VarDial). Minneapolis, MN, pp. 64–79.

• Ortmann and Dipper (2020). Automatic Orality Identification in Historical Texts. In Pro-
ceedings of the 12th Language Resources and Evaluation Conference (LREC). Marseille, France,
pp. 1293–1302.

• Ortmann and Dipper (forthcoming). Nähetexte automatisch erkennen: Entwicklung eines
linguistischen Scores für konzeptionelle Mündlichkeit in historischen Texten.

Wherever I incorporate text or material from previous publications, this is indicated with a footnote
at the beginning of the chapter.
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Additional Resources

To support the practical usefulness of this thesis, it is accompanied by a range of additional material,
including data, models, and code:

Data The gold data sets and automatically created annotations from Chapters 5–7 of this thesis
are provided with the evaluation results and documentation in a Git repository at https://gi
thub.com/rubcompling/classig-data. The repository includes all gold data sets that
can be legally redistributed. For data sets with restrictive licenses, information about the selected
train/dev/test splits is given. For access to the original data, contact information is provided.

Due to space constraints, the large compilation of annotated data sets from the example appli-
cation in Chapter 8 cannot be stored in the same repository. Instead, all data sets and language
models can be downloaded from the Zenodo repository at https://doi.org/10.5281/
zenodo.7180973.

Models &Code The Python code to run the experiments in this thesis and annotate new data sets
is released as the CLASSIG pipeline (Computational Linguistic Analysis of Syntactic Structures
In German). It is made available in a Git repository at https://github.com/rubcomp
ling/classig-pipeline under a free, permissive license so that results can be reproduced
and built upon in future work. The repository also contains the trained models and the Java and
Python libraries required to use them. In addition, I provide the R code used to create the plots and
statistics for this thesis.

Due to space constraints, the chunker models (Chapter 6.1) cannot be stored in the same repos-
itory. Instead, all chunker and parser models are also included in the data package and can be
downloaded from Zenodo (https://doi.org/10.5281/zenodo.7180973).

I hope that these resources prove fruitful for future (computational) linguistic studies on syntactic
structures in (historical) German.
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CHAPTER 2

Background

This chapter describes the background information that is necessary to follow the contents of this
thesis. I will start with a more detailed look at the phenomenon of extraposition in Section 2.1 and
describe different factors that are assumed to influence it in Section 2.2. I will pay special attention
to the factors that were at the core of our project’s research agenda. Specifically, these are length
(2.2.1), orality (2.2.2), and information density (2.2.3). The three factors will play an essential role
in Chapter 8, where their influence on the extraposition of relative clauses is examined in a large
collection of modern and historical data. The chapter closes with a general overview of related
work on the automatic analysis of historical (German) language in Section 2.3. The discussion will
be complemented with details on individual annotations in the respective chapters.

2.1. The Phenomenon of Extraposition
As already mentioned in the introduction, this thesis emerged from a project on the diachronic
development of extraposition. In German, different types of ‘extraposition’ can be distinguished,
such as right dislocation, apposition, repetition, etc. (Altmann 1981). However, these distinctions
are based on criteria like prosody that cannot (always) be inferred from written text, especially for
historical data. In our project, we subsumed all of these types under the term ‘extraposition’, which
we define as the movement of constituents from the middle field to the post-field of the sentence.2
Some constituents can also be extraposed from the pre-field, e.g., attributive clauses, but this is the
exception rather than the rule (Zifonun et al. 1997).

Example (4a) shows a relative clause located in the middle field, directly adjacent to its nominal
antecedent. I will refer to such constituents in their base position as being placed in situ. In (4b),
the relative clause has been extraposed, i.e., it has been moved away from its antecedent and behind
the right sentence bracket.

2Even though I use the word ‘movement’ here, this thesis is not intended to make any claims about underlying grammat-
ical processes that lead to a specific surface structure. Instead, I focus on a theory-neutral description and computa-
tional analysis of the syntactic variation that can be observed between the unmarked, default position of constituents
in the middle field and an alternative, ‘exceptional’ positioning in the post-field. The annotations that are created
with the methods from this thesis can, of course, be used to find data-based evidence from the perspective of specific
grammatical theories, cf., e.g., Voigtmann and Speyer (forthcoming).
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(4) a. Er will das Buch, das ich empfohlen habe, lesen.
b. Er will das Buch lesen, das ich empfohlen habe.

‘He wants to read the book that I recommended.’

The definition of extraposition as moving elements from one specific field to another is based on
the topological field model (Höhle 2019; Wöllstein 2018). According to this framework, German
sentences are structured into a linear sequence of fields organized around the verbal material. A
detailed explanation of the topological field model will be presented in Chapter 5, which dives
into the automatic recognition of fields in modern and historical German. Here, I will only briefly
illustrate the idea with a simplified analysis of example (4a):

Left Right
Pre-field bracket Middle field bracket Post-field

Er will das Buch, das ich empfohlen habe, lesen.
He wants the book that I recommend to read.

In the example, there are five different fields: pre-field, left sentence bracket, middle field, right
sentence bracket, and post-field. The left and right brackets contain the verbal elements (here:
modal verb and infinitive). Together they form the basic skeleton of the sentence, also called the
sentence frame. The remaining fields are named according to their position before (pre-field), in
between (middle field), or behind (post-field) the sentence brackets. In the example, the pre-field
contains the subject, while the remaining information is put in the middle field, and the (optional)
post-field remains empty.

For some constituents, the post-field is considered the default position, e.g., certain types of
subordinate clauses (Zifonun et al. 1997, p. 1651ff.). If other elements are moved to the post-field,
this is called extraposition. The simplified analysis of example (4b) with the extraposed relative
clause in the post-field would look like this:

Left Right
Pre-field bracket Middle field bracket Post-field

Er will das Buch lesen, das ich empfohlen habe.
He wants the book to read that I recommend.

When working with historical data, it is important to note that the topological field model is based
on modern German sentence structure, which only evolved over time and can differ substantially
from historical language. Even though the sentence frame is already attested for Old and Mid-
dle High German, it was finally established only in the Early New High German period (Schildt
1976; Sahel 2015, among others). Especially the position of the right sentence bracket was still
subject to change in older data, and the model may not be able to capture the full complexity of his-
torical syntactic structures. As a consequence, several scholars argue that post-field placement in
modern and historical German is not directly comparable (see, e.g., the discussion in Sahel 2015).
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Nevertheless, it seems reasonable in practice to apply the framework to historical German, as this
allows to investigate the emergence of modern sentence structure and the diachronic development
of extraposition.

Diachronic Development

As linguistic studies have shown, the relative frequency and the types of elements that can be extra-
posed have changed over time (e.g., Schildt 1976; Coniglio and Schlachter 2015; Sapp 2014; Sahel
2015; Speyer 2016). When the sentence frame was still developing, various constituents used to
be placed at the borders of the clause for different reasons (Paul 2007). Over time, especially the
post-field placement of phrases has been significantly reduced, leading to less extraposition overall
(Coniglio and Schlachter 2015; Sapp 2014, among others). In modern (standard) German, extrapo-
sition is restricted mainly to complex constituents like relative and complement clauses, comparative
elements, and some prepositional phrases (Zifonun et al. 1997), cf. examples (5)–(7).

(5) Hör endlich auf mit dem Quatsch!
‘Stop the nonsense!’

(6) Das Wetter ist noch schöner gewesen als gestern.
‘The weather has been even better than yesterday.’

(7) Ich muss die Bücher abholen, die ich bestellt habe.
‘I have to pick up the books that I ordered.’

Other constituents in modern German are extraposed almost only in spoken or oral-like language
(Zifonun et al. 1997), e.g., noun, adjective, or adverb phrases as in examples (8)–(10) from the
TüBa-D/S treebank of spoken German (Hinrichs et al. 2000).

(8) Da ich immer in die Stadt muß jeden Morgen, wäre Innenstadtnähe ziemlich günstig.
‘Since I always have to go to the city every morning, downtown would be very convenient.’

(9) Wenn Sie dann Lust hätten spontan, könnten wir auch noch in das Theater gehen.
‘If you would like spontaneously, we could also go to the theater.’

(10) Sollen wir dann abends noch was machen zusammen?
‘Should we do something in the evening together?’

In earlier stages of German, these constituents were more regularly extraposed in written language,
too (cf., e.g., Coniglio and Schlachter 2015; Schildt 1976; Speyer 2016), albeit to varying degrees
depending on several influencing factors (cf. Section 2.2). Since extraposition is an optional process,
the next section will address the question of what causes extraposition and discuss several factors
that have been identified as possible triggers.
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2.2. Influencing Factors
In the literature, various explanations for the phenomenon of extraposition exist. What many of
them have in common – even if not stated explicitly – is a processing perspective: The movement of
constituents to the post-field is assumed to somehow facilitate communication (e.g., Hawkins 1992;
Gibson 1998). However, different hypotheses exist regarding the influencing factors that underlie
this process. For example, processing the sentence might be facilitated by specifically extraposing
longer or more complex constituents (e.g., Uszkoreit et al. 1998; Wasow 1997) or by extraposing
constituents that convey high amounts of information (e.g., Vinckel 2006; Voigtmann and Speyer
2021a). Reducing dependency lengths between the sentence brackets through extraposition could
also help sentence processing in accordance with syntactic locality principles (Gibson 1998; Futrell
et al. 2015). It seems likely that there is an interplay of these different factors (e.g., long constituents
may be more complex, contain more information, and cause longer dependencies), which especially
comes into play in oral language where processing constraints are more relevant than in written
language (Weiß 2005).

In this section, I will focus on three factors that played a central role in our research project:
length, orality, and information density. Sections 2.2.1–2.2.3 describe each of the factors in de-
tail, including how they are calculated and what has been observed about their effects in previous
studies. In Chapter 8, their influence on the extraposition of relative clauses will be explored with
the methods that are developed in this thesis. Other possible triggers of extraposition are briefly
discussed in Section 2.2.4.

2.2.1. Length
The observation that the order of constituents is influenced by their length is commonly attributed
to Behaghel (1932). His ‘law of increasing constituents’ (Gesetz der wachsenden Glieder) states
that shorter elements precede longer elements. In the literature, it is generally assumed that this
principle also applies to extraposition. Studies agree that longer constituents are extraposed more
often than shorter ones, and this observation holds for phrasal and clausal extraposition as well as
across different genres and time periods (Uszkoreit et al. 1998; Wasow 1997; Speyer 2016; Sapp
2014; Voigtmann and Speyer forthcoming, among others).

For example, Sapp (2014) finds that only 10% to 33% of phrases with 1–3 words in his data set
of Middle High German and Early New High German are extraposed vs. 50% to 86% of phrases
with 5–10 words. Similarly, Uszkoreit et al. (1998) report that extraposed relative clauses (RelCs)
in modern German are about 1.3 words longer than in situ RelCs, and extraposition is rated as more
acceptable for longer RelCs.

Often the terms length, heaviness, and complexity are used synonymously. While Zifonun et al.
(1997) claim that structural complexity is more relevant than sheer length, Wasow (1997) finds that
length and complexity are correlated: Longer constituents also tend to have more complex struc-
tures, and counting words is equally useful as counting nodes or phrasal nodes. The experiments
by Weber (2019) suggest that the number of words may even be more relevant than the number
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of phrasal nodes for the acceptability of PP extraposition. I will follow these considerations in
understanding length as the number of words in a constituent.

From a processing perspective, extraposing longer elements makes sense not only for the listener
but also for the speaker because it allows to post-pone the planning of the constituent (Wasow 1997).
Concerning the observed differences between constituent types (Section 2.1), it also seems plausible
that the importance of length for extraposition explains why long, complex constituents like relative
clauses are often found in the post-field, also in standard written German. In modern newspaper
text, 25% of the relative clauses are (unambiguously) extraposed (Chapter 7, cf. also Uszkoreit et al.
1998). In contrast, phrases, which are usually shorter and less complex, are mainly placed in situ.
Overall, less than 2% of all phrases are extraposed. Even for prepositional phrases, which are the
most frequently extraposed phrase type, less than 5% of the instances in modern newspaper text
are found in the post-field (cf. Chapter 7).

2.2.2. Orality
The second influencing factor I want to consider in this thesis is referred to by various names like
genre, register, discourse mode, or formality. Essentially, these terms point to the underlying notion
of conceptual orality as a trigger of extraposition. The distinction between conceptually oral and
literate language was established by Koch and Oesterreicher (1985), who observed that linguistic
utterances, independently of the medium, can show characteristics that are typically attributed to
written or spoken language (cf. also Halliday 1989). For example, despite its spoken realization,
a scientific talk may resemble prototypical written language, while chat communication, although
realized in the written medium, exhibits characteristics of spoken language.

A register analysis by Biber (1995) suggests that this distinction is a universal linguistic phe-
nomenon, even though it may be realized differently in different languages. In German, extrapo-
sition is considered a typical feature of orality (Müller 1990; Richter 1985; Weiß 2005; Vinckel-
Roisin 2015), i.e., spoken and spoken-like language shows more extraposition than written and
literate-style language. For example, modern spoken German allows to extrapose more diverse
constituent types, including several types of (typically short) phrases (Zifonun et al. 1997; Richter
1985; Tomczyk-Popińska 1987; Weiß 2005, among others; cf. Section 2.1). And it generally
shows higher rates of extraposition than modern written German. In the TüBa-D/S treebank of
spoken German (Hinrichs et al. 2000), about 10% of the prepositional phrases are extraposed,
compared to only 3% in newspaper text from the TüBa-D/Z corpus (Telljohann et al. 2017; see
Chapter 7) – probably because processing constraints are more relevant in spoken than written
language.

For historical German, obviously, no spoken data exists, but the same difference can be ob-
served within the written medium when comparing conceptually oral and literate data. For exam-
ple, orally-oriented texts like women’s letters or fictional dialogues show more phrasal extraposition
than administrative texts (Ebert 1980; Dipper and Schultz-Balluff 2013).
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One hypothesis is that the diachronic decrease of (phrasal) extraposition may, at least in part,
be attributed to a stylistic change of written language and, hence, to orality. Older writings are
said to be closer to spoken language (Betten 1989), i.e., more orally-oriented, and therefore may
contain higher rates of extraposition – just like modern spoken language contains more extraposition
than modern written language. With the development of a literate style, middle fields may have
become denser with fewer constituents being extraposed because the written medium does not
depend as much on working memory capacity. Over time, due to the ‘prestige’ of written language,
this development may have reflected back into spoken language (Halliday 1989), leading to less
extraposition overall.

To investigate such hypotheses and the general interplay of orality and extraposition, the degree of
orality must be quantified. Koch and Oesterreicher (2007) propose mainly extra-linguistic criteria
to situate texts on the literate-to-oral continuum, such as publicity vs. privacy, weak vs. strong
emotional involvement, distance vs. proximity, or monologicity vs. dialogicity. The problem is that
these criteria are rather vague and difficult to operationalize. One possible approach is to group
texts into registers with prototypical extra-linguistic characteristics, such as scientific publications
or spontaneous spoken communication. That is also what studies on extraposition do when they
compare, e.g., the proportion of extraposed phrases in letters and administrative texts. As we have
shown in previous studies (Ortmann and Dipper 2019; Ortmann and Dipper 2020), this approach
can be a good approximation of orality.

However, there is still a significant amount of variation within registers. In response to this,
we developed a method to objectively measure the degree of orality of individual texts (Ortmann
and Dipper forthcoming). Our approach is based on the model by Ágel and Hennig (2006) who
proposed to determine linguistic features like deixis, ellipsis, interjections, or the proportion of com-
plete sentences in a text and compare them with the distribution in a prototypical text to calculate
the relative degree of orality. Since recognizing their features requires a careful manual analysis of
every single sentence, we came up with a new set of features that can be determined fully automat-
ically based on standard annotations. We include features from the areas of complexity, variance,
reference/deixis, syntax, and lexis. For an overview of the original feature set, see Ortmann and
Dipper (2019). When we tested the features on modern German (Ortmann and Dipper 2019) and
historical German (Ortmann and Dipper 2020; Ortmann and Dipper forthcoming), we found that
especially simple features like word length or the frequency of certain pronouns are good predictors
of orality.

Based on these findings, we developed a statistical model that takes the most informative features
to calculate an objective orality score for individual texts.3 Table 2.1 lists the features that are
included in the score with their respective weights and definitions. In order to determine the degree
of orality, the features are automatically identified in a given text. Since individual features can take
on very different values (e.g., an average word length of 5 letters vs. a proportion of interjections

3A Python implementation to calculate our orality score is provided at https://github.com/rubcompling
/COAST. The functionality is also integrated in the code that comes with this thesis and is used for the example
analysis in Chapter 8.
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Feature Weight Definition
mean_word -0.819 Mean word length.
subord -0.314 Ratio of subordinating conjunctions (tagged as KOUS or KOUI) to

full verbs.
V:N 0.528 Ratio of full verbs to nouns.
PRON1st 0.717 Ratio of 1st person pronouns with lemmas ich ‘I’ and wir ‘we’ to all

words.
DEM 0.060 Ratio of demonstrative pronouns (tagged as PDS) to all words.
DEMshort 0.365 Proportion of demonstrative pronouns (tagged as PDS) with lem-

mas diese or die ‘this/these’, which are realized as the short form
(lemma die).

PTC 0.104 Proportion of answer particles (ja ‘yes’, nein ‘no’, bitte ‘please’,
danke ‘thanks’) to all words.

INTERJ 0.276 Proportion of primary, i.e., one-word interjections (e.g., ach, oh,
o, bravo, halleluja, hmm) to all words.

Table 2.1.: List of features included in our orality score with their respective weights and defini-
tions (Ortmann and Dipper forthcoming). A positive weight means that the feature indicates
conceptual orality, a negative weight indicates conceptual literacy.

of 0.1%), values are scaled to the standardized area between 0 and 1 with a linear transformation
(Eq. 2.1). Because sensible minimum and maximum values are difficult to determine for most
features, the lowest value for a given feature is mapped to 0 and the highest value to 1.

x′0 =
x0 −min

max−min
(2.1)

To calculate the orality score, the scaled features are then factored in with their respective weights,
as shown in Eq. 2.2. In our experiments, we found a high correlation (r = 0.92) of the orality
score with expert judgments, making it a promising method to explore the effects of orality on the
phenomenon of extraposition (Chapter 8).

Orality Score =
N∑
i=1

wi ∗ xi (2.2)
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2.2.3. Information Density
The third factor I want to discuss in more detail was the main focus of our research project. We
hypothesized that extraposition is a form of information management, understanding information
in the sense of Shannon (1948) as predictability in context. If a word is highly predictable from the
context, it conveys less information than less predictable, surprising words. The surprisal of a word
is calculated as the negative log of the word’s probability in a given context (Eq. 2.3).

surprisal(word) = −log2(p(word|context)) (2.3)

Word probability can be estimated with language models (Jurafsky and Martin 2021). In our project,
we used n-gram and skip-gram models, which condition the probability of a word on n preceding
words. Words that are infrequent in the given context have a low probability and, therefore, a high
surprisal, which has been linked to perceiving and production difficulty (Hale 2001; Jaeger 2010).

According to information theory, there is an upper limit to how much information can be reliably
communicated through a specific channel at any given time (Shannon 1948). If the channel capacity
is exceeded, this can result in loss of information and failed communication. Language users are
assumed to structure their messages in a way that ensures successful communication. They do so by
distributing information as evenly as possible across their utterances to prevent peaks and troughs
in the information profile, which has become known as the Uniform Information Density (UID)
hypothesis (Levy and Jaeger 2007). The most prominent syntactic example is the phenomenon
of that-omission in English relative clauses. Levy and Jaeger (2007) show that language users are
more likely to insert the optional relativizer that to smooth the information signal if the beginning
of the relative clause is highly surprising. Otherwise, the relativizer is more likely to be omitted.

For extraposition in German, we assume a similar effect: Highly informative, surprising con-
stituents tend to be extraposed more often to prevent overloading the middle field with peaks of
information. Postponing the constituent to the post-field could reduce memory strain on the middle
field and distribute the information more evenly across the sentence. In German literature, this is
also referred to as Informationsentflechtung (‘information disentanglement’, Zifonun et al. 1997).

There are (at least) two different ways to measure this effect. Looking at the mean surprisal
of a constituent (i.e., the average surprisal of all words comprising the constituent) corresponds to
the idea that too informative units may exceed channel capacity and should be moved behind the
sentence frame where more cognitive resources are available again. Voigtmann and Speyer (2021a),
Voigtmann and Speyer (2021b), and Voigtmann and Speyer (forthcoming) inspect cumulative and
mean surprisal on our manually annotated data set and find, when controlling for length, that higher
surprisal can favor extraposition of relative clauses and (attributive) PPs in Early New High German.

The second option is to look at the information profile of the entire sentence. If we assume that
extraposing surprising constituents facilitates communication, this may be explained by a smoothing
effect on the overall information profile. Compared to studies like Levy and Jaeger (2007), this is
more difficult to quantify, though, because the movement of a constituent simultaneously creates
changes in several places. Therefore, we started to experiment with the DORM measure (Deviation
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Of the Rolling Mean), introduced by Cuskley et al. (2021) to objectively quantify the uniformity
of information profiles and compare the differences between different orders of elements like words
or constituents.

Given a list of surprisal values (e.g., n-gram word surprisal), DORM takes the arithmetic means
of every two adjacent surprisal scores (Eq. 2.4) and calculates the sample variance of these rolling
means, as shown in Equation (2.5). Lower DORM values correspond to a more uniform informa-
tion profile.

for i in(1..n− 1) : rolling meani =
surprisali + surprisali+1

2
(2.4)

DORM = s2 =

∑n
i=1(rolling meani − x̄)2

n− 1
(2.5)

Since DORM values depend on the surprisal scores of individual items, they are not directly compa-
rable between sentences. Instead, Cuskley et al. (2021) introduce UIDO, which is the most uniform
information distribution that can be achieved by scrambling the elements in a sentence (e.g., words
or constituents). When comparing sentences with their respective UIDO variants, they find that in-
formation profiles of human language are closer to the optimal distribution than would be expected
by chance, speaking in favor of the UID hypothesis.

However, arbitrary permutations of words or constituents to determine the optimal information
profile of a sentence are not linguistically plausible because the possible orders that language users
can (realistically) choose from are restricted by the language’s grammar. In our project, we in-
troduced the concept of a variant corpus, which allows to explore the effects of plausible word
order variation. In a corpus of variants, only specific aspects of a sentence are manipulated, e.g.,
by ‘un-doing’ the extraposition, while other factors are kept constant. Chapter 7.3 explains how
to create a variant corpus for extraposition. In contrast to UIDO, these variant sentences are still
valid grammatical expressions in the given language and provide a basis for comparing the infor-
mation profiles of original and variant sentences to study the effects of extraposition (or any other
manipulated phenomenon) on the uniformity of the information distribution.

We propose theDORMdiff value (Ortmann et al. 2022) to be the difference between theDORMorig
value of the original sentence and DORMvariant of the variant sentence (cf. Eq. 2.6). An example
calculation of DORMdiff values can be found in Chapter 8.

DORM diff = DORM orig −DORM variant (2.6)

If the DORMdiff value is negative, the original sentence has a smoother information profile than
the variant, suggesting that the phenomenon under investigation positively influences sentence pro-
cessing. In Chapter 8, I will exemplarily test whether the extraposition of RelCs may be associated
with high mean surprisal values or overall improvements of the information profile.

14
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2.2.4. Other Factors
Besides the already mentioned effects of constituent type, time period, length/complexity, orality,
and information density, there is a variety of other factors, which are said to influence the occur-
rence of extraposition. In modern German, the most important aspects seem to be distance and
pragmatic, discourse-related factors. Several studies report that constituent length competes with
the distance between base position and post-field (Uszkoreit et al. 1998; Weber 2019, among oth-
ers). Extraposition occurs primarily over short distances or for very long material. In a corpus study
on modern German, Uszkoreit et al. (1998) find that, on average, relative clauses are extraposed
over only 1.6 words. They also note that extraposition is much more likely over verbal material
than over other intervening elements.

Regarding the function of constituents, adjuncts are more readily extraposed than arguments
(Zifonun et al. 1997). Other influencing factors include the depth of embedding, definiteness, cita-
tions, or the presence of demonstratives (Strunk 2014; Weber 2019; Coniglio and Schlachter 2015).
For relative clauses, it is also assumed that restrictiveness facilitates extraposition (Zifonun et al.
1997, but see Poschmann and Wagner (2016) and Voigtmann and Speyer (2021a) for opposing
evidence).

In older stages of German, information structural aspects played a major role for extraposition,
including focus (Sapp 2014; Poschmann and Wagner 2016) and givenness/newness (Speyer 2016).
In modern German, the post-field can still be used to introduce new topics and serve as an area of
emphasis (Vinckel-Roisin 2015). However, while many properties of extraposition are compara-
ble between modern and historical German (Sapp 2014), the importance of information structural
factors like givenness decreased over time (Coniglio and Schlachter 2015; Speyer 2016).

This list of additional factors that go beyond the focus of this thesis is certainly condensed, but
it gives a general impression of the various influences that interact when it comes to extraposition.

2.3. Related Work
The evidence on influencing factors of extraposition, especially for historical German, stems mainly
from qualitative studies on small, manually annotated data sets. For example, Sapp (2014) analyzes
683 extraposed phrases from five centuries, which corresponds to about 1.4 cases of extraposition
per year. Similarly, Sahel (2015) bases his study on 1.108 relative clauses from three registers
and 150 years, i.e., about 2.5 RelCs per register and year. Although such detailed analyses are
very precise and provide valuable insights, they cannot achieve the same statistical significance and
generalizability as studies on large (modern) data sets. In addition, the strong expert involvement
during data selection and/or qualitative investigation always comes with the risk of introducing
biases into the analysis. Applying quantitative methods to complement these traditional approaches
seems valuable to verify hypotheses and perhaps even discover previously overlooked patterns in
the data.
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However, the application of natural language processing (NLP) to historical language faces sev-
eral obstacles. Historical data is characterized by a high degree of variation, which is certainly
interesting in and of itself, consider, e.g., studies on diatopic and diachronic variation as reflected
in the graphemic variation (Dipper and Waldenberger 2017; Waldenberger et al. 2021). However,
this variation also hinders automatic analyses, aggravating the already existing problem of data
sparsity. While modern NLP tools usually need large amounts of annotated data to train accurate
models, such resources rarely exist for historical language. As a result, most previous work on the
automatic analysis of historical language has focused on automatically retrieving texts from hand-
written sources with OCR and creating low-level annotations like sentence and word tokenization,
normalization, lemmatization, and morpho-syntactic analysis or Part-of-Speech (POS) tagging. To
date, there are several automatically annotated corpora of historical German, including the German
Text Archive (DTA, BBAW 2021), GerManC (Bennett et al. 2007), TüBa-D/DC (Hinrichs and
Zastrow 2012), and parts of the Reference Corpus of Early New High German (ReF, Wegera et al.
2021).

Beyond the morpho-syntactic level, much fewer resources and previous studies exist. Data sets
that include syntactic annotations are mostly small and/or very specific to a certain research project
(e.g., HIPKON, Coniglio et al. 2014; Deutsche Diachrone Baumbank, Hirschmann and Linde
2010), or the accuracy of the annotations remains unclear (TüBa-D/DC, Hinrichs and Zastrow
2012). ReF.UP (Demske 2019), the syntactically annotated part of ReF (Wegera et al. 2021), is a
notable exception, but was released only recently.

The small corpus basis of highly varied language data qualifies historical German as a less-
resourced language (Cieri et al. 2016) and makes training and using statistical or neural NLP tools
difficult or impossible. To overcome this challenge, previous studies have experimented with dif-
ferent solutions. One possible approach is to use the automatic tools only for pre-annotation, which
can significantly speed-up the manual annotation process and help to create large data sets more
quickly (cf. Eckhoff and Berdičevskis (2016) for dependency parsing of Old East Slavic). Another
approach is to pre-process the historical data, e.g., by normalizing word forms and punctuation, to
increase the accuracy of a modern parser. Hinrichs and Zastrow (2012) train the Berkeley parser
(Petrov et al. 2006) on modern German and apply it to German texts from the 13th to 20th cen-
tury but do not provide evaluation results. Krielke et al. (2022) annotate scientific texts from the
DTA with dependencies. After filtering out problematic sentences, they observe labeled attachment
scores of about 80% on the subset of ‘good’ sentences.

A possibility to entirely bypass the need for training data is to fall back on (more or less) complex
rules (Chiarcos et al. 2018; cf. also my experiments on sentence bracket recognition in Chapter 5).
Contrary to statistical models, this approach requires expert knowledge to create rules and may
be less robust, especially in rare cases. The topological field parser for Middle High German by
Chiarcos et al. (2018) also relies on rich pre-annotations, which do not exist for most data sets. An-
other strategy that does not require any historical data is manipulating modern data. Petran (2012)
takes a modern German data set and approximates historical language by removing punctuation
and capitalization. Since these orthographic changes are not the only difference between modern
and historical language, it is unclear if this yields realistic results.
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In my annotation studies, I use modern data (and historical data, if available) to train statistical
models that can be transfered to non-standard registers and historical time periods by operating on
the shared level of POS tags. In Chapters 5–6, I will describe this approach in more detail and
complement it with a discussion of related work on the specific annotations. Contrary to studies
like Chiarcos et al. (2018) and Hinrichs and Zastrow (2012), I also conduct detailed evaluations
and error analyses for each annotation to provide a realistic impression of annotation accuracy.
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Corpus Data

This chapter introduces the data sets that serve as training and evaluation data throughout the ex-
periments in Chapters 5–7. As already alluded to, there are several challenges when working with
historical data:

Data Formats Despite standardization attempts, e.g., by the Text Encoding Initiative (TEI),4
there are no generally accepted standards regarding the annotation and storage of historical data
that are used by all research projects (yet). As a consequence, corpora of historical German are
supplied in a wide variety of data formats, including in particular:

• different versions of the column-based CoNLL formats

• various XML formats such as TIGER-XML, TEI/XML (e.g., DTA “Base Format”, Geyken
et al. 2012), CorA-XML (as produced by the CorA annotation tool, Bollmann et al. 2014),5
EXMARaLDA’s Basic Transcription (exb) format (Schmidt and Wörner 2014),6 WebLicht TCF
(Hinrichs et al. 2010), etc.

To deal with this multitude of formats, we implemented a Python pipeline that can be used to convert
different historical corpora (and also modern data sets) to a uniform data format (see Figure 3.1).
The converter is freely available under an MIT license.7 An enhanced version is also integrated
into the CLASSIG pipeline that accompanies this thesis, enabling the automatic syntactic analysis
of different data sets with the developed methods. As shared data format, I have chosen the column-
based CoNLL-U Plus format8 because it can represent the necessary annotations for our project in
a convenient and human-readable form. Besides default word-based annotations, we mainly want
to store syntactic annotations, i.e., spans and trees.

Span annotations like chunks, phrases, or clauses can be represented with the simple BIO format
that is commonly used for sequence labeling. Every token is annotated with a BIO tag, consisting
of the token’s position in the span (begin B, inside I, outside O), a dash (-), and the span label. So
each token is tagged as either B-S (beginning of span), I-S (inside of span), or O (outside of span),

4https://tei-c.org/
5https://cora.readthedocs.io/en/latest/coraxml/
6https://exmaralda.org
7https://github.com/rubcompling/C6C
8https://universaldependencies.org/ext-format.html
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Figure 3.1.: Illustration of the corpus conversion pipeline from our project. The converter can be
used to transform corpora from different input formats to a standardized CoNLL-U Plus output
format. We also provide processors, e.g., to map historical POS tagsets like HiTS (Dipper et
al. 2013) to the German standard tagset STTS (Schiller et al. 1999). The internal document
representation serves as a basis for the automatic analyses with the CLASSIG pipeline in this
thesis. The image at the bottom shows an excerpt from the DTA gold data set in the column-
based target format. The span annotations that are created in this thesis are encoded as BIO
tags (see also Figure 3.2). The converter pipeline is available at https://github.com/r
ubcompling/C6C.
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Figure 3.2.: Different options to represent tree structures in the CoNLL-U Plus format. The tree
(right) can either be represented with a bracket structure (top) or with stacked BIO tags using
vertical pipes (left). For example, the S-node dominates the complete sentence, i.e., it starts
with the B-S tag for the first token and ends with the I-S tag for the last token. The first
NP is dominated by the S node and dominates the word Das, so the B-NP tag is appended to
the B-S tag of the first token. The VP is dominated by S and dominates ist ein einfacher Satz.
Consequently, the B-VP and I-VP tags are appended to the I-S tags of the four tokens, etc.

with S being a place-holder for different labels. BIO tags can be stacked to represent multi-level
annotations, e.g., several stacked entities. Also, the BIO format can be easily extended to store
additional information like the position of a constituent (extraposed vs. in situ) by appending it to
the BIO tag, e.g., B-NP-extrap. A detailed documentation is provided with the data sets and
program code.

For the representation of tree structures, such as topological field annotations and constituency
trees, the CoNLL-U Plus format offers (at least) two different possibilities, provided that there are
no discontinuous nodes.9 Trees can either be represented with a traditional bracket structure or
be treated like span annotations, using several stacked BIO tags to represent the hierarchical tree
structure (cf. the example illustration of the two options in Figure 3.2).

Tagsets Besides the multitude of data formats, there are no commonly agreed upon standard
tagsets or guidelines for the syntactic annotation of historical German. Consequently, different
corpora use different tagsets and annotation schemes, e.g., STTS (Schiller et al. 1999), HiTS (Dip-
per et al. 2013), and other custom tagsets for POS tagging. With our corpus conversion pipeline,
we provide mappings for the different historical POS tagsets to STTS tags, the de-facto standard
tagset for modern German (Schiller et al. 1999). In some cases, this mapping may lead to a loss of
information (cf., e.g., Chapter 5 on relative adverbs and particles), but it allows to create a shared

9The ability to represent discontinuous structures is one of the main advantages of XML-based formats like TIGER-
XML. However, standard NLP tools cannot handle such discontinuities, so I have removed them from the trees as
described in Chapter 6. The provided data sets in CoNLL-U Plus format only contain the modified, continuous trees.
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basis across data sets and time periods, which can serve as input for standard NLP tools (see the
discussion on variation, below).

Corpus Size The third problem when working with historical language is a lack of (annotated)
data, which is generally required for training and evaluating automatic annotation methods. Ideally,
large amounts of annotated text from all time periods of German would be available that could
be exploited for this purpose. However, the manual annotation of corpus data is effortful, time-
consuming, and thus expensive. As a consequence, most historical data sets are provided only with
basic or highly specific linguistic annotations that were compiled for a particular research project.
Especially annotations beyond the morpho-syntactic level are rare and often exist only for small
data sets.

As described in Chapter 2.3, there are different approaches to deal with this problem. In my
dissertation project, I have decided to exploit large modern corpora (and historical data where
available) to train statistical models and transfer the results to other registers and time periods.
Smaller, manually annotated data sets are only used for evaluation. Contrary to previous studies
(e.g., Chiarcos et al. 2018; Hinrichs and Zastrow 2012), this approach enables me to train powerful,
flexible probabilistic models for modern and historical German and – maybe even more importantly
– evaluate the results.

Variation Another difficulty for the automatic analysis of historical German is the inherently
high variation. Especially the deviation from modern orthography makes the direct application of
modern, usually word-based NLP tools problematic. Bollmann (2018) finds 80 different spelling
variants for the word Frau(en) ‘woman/women’ in one Early New High German corpus. This de-
gree of variation aggravates the already existing problem of data sparsity (cf. the discussion on
corpus size above) and makes it difficult to train probabilistic models. One possible solution would
be to normalize word forms, i.e., map them to a modern word form (cf. example (11) from the HIP-
KON data set). It has been shown that this approach can increase accuracy for dependency parsing
of Middle English (Schneider et al. 2015) or tagging historical German and Dutch (Bollmann 2013;
Tjong Kim Sang et al. 2017). In my studies, I choose an even higher level of abstraction and use
primarily the POS tags, which are shared across data sets, as input for the models. This approach
not only bypasses the problem of unstandardized word forms but may also mitigate the effects of
lexical change and reduce the problem of data sparsity by shrinking the ‘vocabulary’ to a set of only
54 tags.

(11)

Orig: vn̄ woͤlte gan zuͦ ſínem vatt’ vnd ſprechē
Norm: und wollte gehen zu seinem Vater und sprechen
POS: KON VMFIN VVINF APPR PPOSAT NN KON VVINF

and wanted to go to his father and speak
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Finally, I expect relevant variation between different language registers, not only for historical but
also for modern data. Most NLP tools are trained on newspaper or web data, for which abundant
resources exist. But system performance can drop significantly when the models are applied to
non-standard data (cf., e.g., Pinto et al. 2016). To get an impression of how well models can be
transferred to out-of-domain data, I include data from different registers in the evaluation.

In total, I used four modern and four historical gold data sets for my experiments in Chapters 5–7.
During the course of the project, these data sets have continuously evolved and were successively
enriched with more layers of annotation – some derived automatically from existing annotations,
others created manually by student annotators.10 In this thesis, I use the final version of the data
sets and reproduce the results from my previous studies with these data sets wherever possible. In
combination with the new evaluation method, which I only developed after the last published study
(see Chapter 4), this is the reason why numbers may differ from previously published results.

The following sections introduce the different modern (Section 3.1) and historical data sets
(Section 3.2), followed by an overview of the corpora and available annotations in Section 3.3. As
already mentioned, the data sets are provided for download at https://github.com/rub
compling/classig-data.

3.1. Modern Data Sets
For modern German as one of the twenty most spoken languages in the world,11 ample language
resources exist. For example, the German Wikipedia is the second largest active Wikipedia after
English, with more than 2.7M articles and over 1.4B words.12 However, most of the available data
consists of raw text, for instance, Wikipedia articles or other web pages, and large corpora are often
provided with automatically generated annotations, e.g., SdeWaC (Faaß and Eckart 2013). Also,
syntactic analyses often focus on dependency annotation,13 whereas only a few data sets include
topological field annotations or constituency parses. To ensure a high quality of the training data
and trained models, I selected two manually annotated German treebanks (TüBa-D/Z, Tiger) for
training and evaluation in my studies. In addition, I include evaluation data from other registers
(Spoken, Modern) to judge the transferability of models to out-of-domain data. In the following
paragraphs, each of the modern data sets is briefly introduced.

10Manual annotations were performed with WebAnno, version 3.6.6 (Eckart de Castilho et al. 2016;
https://webanno.github.io/webanno).

11Ethnologue, 25th edition, https://www.ethnologue.com/ (September 14, 2022)
12Considering official Wikipedias with at least 200 active users according to Wikimedia, https://meta.wikim

edia.org/wiki/List_of_Wikipedias (September 14, 2022)
13https://universaldependencies.org/
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TüBa-D/Z The TüBa-D/Z corpus (Telljohann et al. 2017)14 is a collection of 3,816 German
newspaper articles from ‘die tageszeitung’ (taz) with approx. 100k sentences and almost 2M to-
kens. The articles are semi-automatically annotated with morphology, POS tags, lemmas, and
constituency trees that include topological field annotations. I will refer to these trees as TüBa-
style trees, in distinction from the Tiger-style trees, which do not include topological fields (see
below). The following image shows an example tree from the documentation (Telljohann et al.
2017, p. 155):

The corpus also contains automatically derived chunks (Kübler et al. 2010) and additional anno-
tations like dependencies, named entities, and coreference resolution. For my studies, I added
automatically derived phrases (cf. Chapter 6.2) and annotations of extraposition (cf. Chapter 7).
The corpus is free to use for academic research but may not be redistributed. For my annotation
experiments, it is split into a training (80%), development (10%), and test set (10%). The split is
used consistently across all of my papers and the chapters of this thesis.

Tiger The Tiger treebank (Brants et al. 2004)15 is the second modern newspaper corpus included
in my thesis. It consists of 2,263 German news articles from the ‘Frankfurter Rundschau’ and
contains about 50k sentences with 888k tokens. The articles are semi-automatically annotated
with POS tags and constituency trees, henceforth referred to as Tiger-style trees. Contrary to TüBa-
style trees, they do not contain information about topological fields. Discontinuous annotations
were removed from the trees as described in Chapter 6. The following image shows an example
tree from the annotation manual (TIGER Project 2003, p. 49):

14Release 11.0, http://www.sfs.uni-tuebingen.de/ascl/ressourcen/corpora/tueba-dz.
html

15Version 2.2, https://www.ims.uni-stuttgart.de/forschung/ressourcen/korpora/tiger
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The corpus also includes lemmas, morphology, and automatically derived dependency annotations.
For my studies, I added automatically derived chunks (cf. Chapter 6.1), phrases (cf. Chapter 6.2),
and the extraposition of relative clauses (cf. Chapter 7). The corpus is provided with a training,
development, and test section. It is freely available for academic research but comes with a non-
disclosure agreement and may not be publicly redistributed.

Spoken As discussed above, most NLP tools and models are trained and evaluated on modern
standard language. To test the accuracy on other modern data, I include two non-standard data
sets. The first one is the TüBa-D/S corpus (Hinrichs et al. 2000), a treebank of spoken German. It
contains 14 transcribed dialogues from a business context with about 28k sentences and almost 300k
tokens. The corpus is manually annotated with POS tags and TüBa-style constituency trees, which
include topological fields. For this thesis, I added automatically derived phrases (cf. Chapter 6.2)
and extrapositions (cf. Chapter 7). To prevent confusion with TüBa-D/Z, I will refer to the corpus as
‘Spoken’ in Chapters 5–7. The use is free for academic research but does not permit redistribution.

Modern The second non-newspaper corpus was compiled for our study on the evaluation of dif-
ferent NLP tools (Ortmann et al. 2019).16 It contains about 500 sentences with 7.6k tokens from
five different registers with varying degrees of formality: Wikipedia articles,17 narrative text,18

Christian sermons,19 TED talk subtitles,20 and movie subtitles.21 The data was manually anno-
tated with POS tags, lemmas, morphology, dependencies, topological fields, chunks, phrases, and
extraposition. It is licensed under CC BY-SA 3.0, except for the source text of the TED talks,
which are licensed under CC BY–NC–ND 4.0.

16https://github.com/rubcompling/konvens2019
17Sample from the Wikipedia subcorpus of DeReKo, http://corpora.ids-mannheim.de/pub/wikiped

ia-deutsch/2015/wpd15_sample.i5.xml.bz2
18Genre ‘novelette’ from GutenbergDE corpus, edition 14 (https://gutenberg.abc.de/), published after

1900.
19http://www.sermon-online.de
20German translations of English talks, https://www.ted.com/talks?language=de
21Genres ‘Action, Adventure, Drama’ and ‘Comedy, Drama’ from the OpenSubtitles database, http://www.open

subtitles.org/
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3.2. Historical Data Sets
For historical German, the only large data set that includes TüBa-style trees and, hence, topological
field annotations is the TüBa-D/DC corpus (Hinrichs and Zastrow 2012). However, the annota-
tions were created fully automatically with a parser model trained on modern German (TüBa-D/Z
corpus), and no evaluation results are reported, so the accuracy remains unclear. As a consequence,
it does not seem reasonable to train or evaluate newly developed methods on this corpus. Instead, I
selected four manually (or semi-automatically) annotated data sets for my studies, which are briefly
described in the following paragraphs.

Mercurius The Mercurius treebank (Demske 2005)22 contains approx. 8k sentences and 187k
tokens of newspaper text from the 16th and 17th centuries. It is semi-automatically annotated with
POS tags and Tiger-style constituency trees, from which I automatically derived chunks (cf. Chap-
ter 6.1) and phrases (cf. Chapter 6.2). Discontinuous annotations were removed as described in
Chapter 6. The POS tagset was mapped to the modern standard tagset STTS (Schiller et al. (1999);
see Table A.1 in the appendix). The corpus is licensed under CC BY 3.0 and was split into a train-
ing (80%), development (10%), and test set (10%) for my studies. The split is used consistently
across my papers and the chapters of this thesis.

ReF.UP The ReF.UP treebank (Demske 2019) is a subcorpus of the Reference Corpus of Early
New High German (Wegera et al. 2021).23 It includes 26 documents from different registers with
21k sentences and 600k tokens from several language areas from the 14th to 17th century. The cor-
pus is semi-automatically annotated with POS tags and Tiger-style constituency trees, from which I
automatically derived chunks (cf. Chapter 6.1) and phrases (cf. Chapter 6.2). Again, discontinuous
annotations were removed, and the POS tagset was mapped to the modern standard tagset STTS
(Schiller et al. (1999), see Table A.2 in the appendix). The corpus is licensed under CC BY-SA
4.0 and was split into a training (80%), development (10%), and test set (10%) for my studies. The
split is used consistently across my papers and the chapters of this thesis.

HIPKON Besides the two treebanks, I include two smaller, manually annotated data sets for
evaluation. The HIPKON corpus (Coniglio et al. 2014) contains sermons from the 12th to the
18th century (except 15th century). Only sentences with a post-field are annotated, yielding 342
annotated sentences with 4.2k tokens. Annotations include POS tags, basic syntactic structures,
and a non-recursive topological field analysis. For my studies, recursive topological fields, chunks,
phrases, and extrapositions were added manually. Also, the custom POS tagset was mapped to the
German standard tagset STTS (Schiller et al. (1999); see. Table A.3 in the appendix). The corpus
is licensed under CC BY 3.0.

22Mercurius Baumbank (version 1.1), https://doi.org/10.34644/laudatio-dev-VyQiCnMB7CArC
Q9CjF3O

23https://www.linguistics.rub.de/ref
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DTA The German Text Archive (DTA, BBAW 2021) contains large amounts of German texts
from a variety of registers from the 16th to the early 20th century. The data is provided with auto-
matically annotated sentences, STTS POS tags, lemmas, and orthographic normalization. However,
the annotation accuracy turned out to be too low for a meaningful evaluation.24 Therefore, I de-
cided to use a smaller, manually annotated subset of sentences for my experiments.25 My data set
consists of 600 sentences with 18.8k tokens from 29 texts. The texts were published from the 16th

to 20th century in various genres. Included are five newspaper texts and three texts from each of
the following genres: funeral sermon, language science, medicine, gardening, theology, chemistry,
law, and prose. Sentence boundaries and POS tags were manually corrected for my studies. In ad-
dition, the data set was manually enriched with annotations of topological fields, chunks, phrases,
and extrapositions. The DTA is licensed under CC BY-SA 4.0.

3.3. Overview of Corpora and Annotations
Table 3.1 gives an overview of the gold data sets that were presented in the previous sections, includ-
ing sentence and token counts. As mentioned, the smaller gold data sets (Modern, HIPKON, and
DTA) were annotated manually, whereas annotations for the other corpora were already provided
with the corpus or automatically derived from existing annotations. More information on the auto-
matically derived annotations can be found in the respective Chapters 5–7. Whether a data set is
included in a particular annotation study depends on the availability of gold annotations for this data
set. For example, the Mercurius and ReF.UP corpora can only be used to evaluate chunking and
phrase recognition because no topological field annotations exist for these data sets. In the Tiger
corpus, only the extraposition of relative clauses can be identified with the provided annotations.
The spoken data set includes a constituency analysis with topological fields, but it is not possible
to derive consistent chunks from it because relevant annotations of coordination are missing. So,
this data set cannot be used to evaluate chunking methods. Table 3.2 gives an overview of which
annotations are available for which corpus.

24In my topological field study (Ortmann 2020), I found that the POS error rate in the DTA sample ranges between
1.3% and 15% for the different texts (avg: 6.3%). For the sentence boundaries, I found F1-scores between 54.1%
and 100.0% (avg: 86.7%). Of course, it would be more realistic to evaluate on imperfect annotations because many
corpora are not annotated manually. However, evaluating on incorrect data makes it difficult to judge whether an
error is actually caused by the evaluated system or by errors in the data. To get a conclusive impression of the system’s
performance at a specific task, clean and correct gold data is indispensable.

25The manually annotated data set from our research project is also a subset of the DTA. However, there are multiple
reasons why I do not use this sample here. Firstly, it is restricted to only two scientific genres (medicine, theology),
which limits the generalizability of evaluation results. Secondly, the annotations that were created in our project are
not exhaustive enough for my evaluation purposes. For example, to reduce manual annotation effort, only one in situ
phrase per extraposed phrase is annotated, and not all phrases as required for a complete evaluation. Thirdly, no
annotations of topological fields and chunks were created. And finally, the automatic POS annotations were corrected
only toward the end of our project (cf. Chapter 8) and the sentence boundaries are not corrected at all, which makes
them unsuitable for evaluation (see the previous footnote).
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Corpora #Docs #Sents #Toks #Words License
Modern
TüBa-D/Z 3,816 104,787 1,959,450 1,671,198 Academic
Tiger 2,263 50,461 888,076 768,534 Academic
Spoken 14 28,696 296,942 239,897 Academic
Modern 78 559 7,642 6,369 CC BY-SA 3.0 and

CC BY–NC–ND 4.0

Historical
Mercurius 2 8,387 187,423 163,873 CC BY 3.0
ReF.UP 26 21,432 600,569 477,306 CC BY-SA 4.0
HIPKON 53 342 4,210 3,747 CC BY 3.0
DTA 29 629 18,885 16,114 CC BY-SA 4.0

Table 3.1.: Overview of the gold data sets that are used in this thesis. The number of words refers
to all tokens that are not tagged as punctuation. The size of the respective train/dev/test sections
is given in the annotation chapters.

Corpus Sentence
Brackets

Topological
Fields Chunks Phrases RelCs Extra-

position
Modern
TüBa-D/Z ✓ ✓ ✓ ✓ ✓ ✓
Tiger x x ✓ ✓ ✓ (✓ RelCs only)
Spoken ✓ ✓ x ✓ ✓ ✓
Modern ✓ ✓ ✓ ✓ ✓ ✓

Historical
Mercurius x x ✓ ✓ x x
ReF.UP x x ✓ ✓ x x
HIPKON ✓ ✓ ✓ ✓ ✓ ✓
DTA ✓ ✓ ✓ ✓ ✓ ✓

Table 3.2.: Overview of the annotations that are available for each gold data set in this thesis.

27



CHAPTER 4

FairEval: Error Analysis and Fair
Evaluation of Labeled Spans26

The annotations that are created in this thesis can be subsumed under the term ‘labeled spans’.
During my studies, I noticed that evaluating this type of annotation with traditional approaches
can lead to undesirable consequences and requires additional effort to gain a real understanding of
annotation quality. For example, low recall or precision values for the recognition of post-fields do
not reveal if the annotation tool recognized any part of a post-field or no post-field at all, if the post-
field was confused with a middle field or something else, etc. In addition, partly correct annotations
are traditionally penalized as multiple errors, complicating the interpretation of the resulting scores.

In response to these observations, I developed a new evaluation method calledFairEval (Ortmann
2022),27 which produces more meaningful results and, at the same time, provides useful insights
into the actual errors, strengths, and weaknesses of annotation systems. In this chapter, the details
of the method are presented and its usage is demonstrated with different annotation examples. The
method will be used for evaluation throughout the following chapters of this thesis.

4.1. Traditional Evaluation Metrics
Evaluation in NLP serves two main purposes: (i) determining how good a system is at a given task
and comparing its performance to other systems, and (ii) analyzing the errors a system makes to be
able to improve it. For 1:1 mapping tasks like POS tagging, the procedure is clear-cut. Every token
receives exactly one tag, and the number of correctly assigned tags is compared to the incorrect tags
and reported as accuracy, possibly accompanied by a confusion matrix.

For tasks that include the annotation of spans or do not require every token to receive an anno-
tation, e.g., tokenization, named entity recognition (NER), or chunking, the incorrect annotations
can be further divided into false positives (FP, superfluous annotations) and false negatives (FN,
missing annotations). System performance, in this case, is measured by comparing the two types
of incorrect annotations with the number of true positives (TP). The results are reported as recall
(Eq. 4.1; ‘how many annotations that should be present are actually there’) and precision (Eq. 4.2;

26The content of this chapter is taken from my paper Ortmann (2022): Fine-Grained Error Analysis and Fair Evaluation
of Labeled Spans.

27https://github.com/rubcompling/FairEval
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Chapter 4: FairEval

‘how many of the annotations that are present are actually correct’). Usually, there is a trade-off
between precision and recall because improving one likely worsens the other.

Recall =
TP

TP + FN
(4.1)

Precision =
TP

TP + FP
(4.2)

The harmonic mean of precision and recall, better known as F1-score, is consulted to compare
different systems based on a single number (Eq. 4.3).

F 1 = 2 ∗ Precision ∗Recall

Precision+Recall
(4.3)

There are certain issues with these evaluation metrics, though (cf., e.g., Shao et al. (2017) for the
task of word tokenization). In this chapter, I target the yet unsolved problem of double penalties
for the annotation of labeled spans, which is highly relevant for the evaluation of all subsequent
annotations in this thesis. In the next section (4.2), I will first give a short overview of the problem
before I suggest a new approach to the evaluation of labeled spans in the remainder of the chapter.

4.2. The Problem with Traditional Evaluation
When labeled spans are evaluated in the traditional way, in trivial cases as displayed in example
(12), one (missing) annotation counts as one true positive or one error, respectively.

(12)
Target: | A | | A | _
System: | A | _ | A |

1 TP 1 FN 1 FP

However, if a system annotates a span that overlaps with the correct annotation but is not identical
to it, one annotation is counted as two errors as in example (13) because the target annotation is
missing (FN), while another annotation is present (FP).

(13)
Target: | A | | A |
System: | B | | A |

1 FN + 1 FP 1 FN + 1 FP

This phenomenon is especially undesirable since the annotations in (13) are closer to the target
annotation than completely missing or superfluous annotations, i.e., FNs and FPs as in (12). Opti-
mizing a system based on these metrics could thus encourage the system to skip difficult or uncertain
cases because missing an annotation (FN) is punished less than getting it almost right (FN+FP). In-
tuitively, these close-to-correct errors should be punished equally or maybe even less than the errors
in (12), and not vice versa.
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Also, the traditional evaluation with only two error categories does not provide information
about the actual weaknesses of a system, which is critically important for improving performance
(Braşoveanu et al. 2018; Manning 2011). Instead, a manual error analysis would be necessary to
distinguish between the two very different error types in example (13).

As most researchers are likely aware of this problem (cf., e.g., Jurafsky and Martin 2021),
there have been various attempts to deal with it, e.g., by performing qualitative error analyses
(Braşoveanu et al. 2018; Manning 2011), counting overlapping tokens or characters (Potthast et al.
2010), or introducing partial annotation scores or relaxed evaluation metrics (Röder et al. 2018; Ji
and Nothman 2016). However, there is no universal solution yet, and the traditional metrics are
still widely used for evaluating labeled spans despite their drawbacks.

In this chapter, I suggest an approach to a fairer evaluation of labeled spans that prevents double
penalties for a single annotation and, at the same time, allows for a more fine-grained error analysis.
First, Section 4.3.1 introduces new error types that help to distinguish between different kinds of
overlapping spans. Section 4.3.2 then discusses ways to calculate precision, recall, and F1-scores
based on these error types. Afterwards, in Section 4.4, an algorithm for the identification of the
different error types in flat and multi-level annotations is presented. Finally, Section 4.5 compares
the results of traditional evaluation to fair evaluation for different types of annotations. The chapter
concludes with a discussion in Section 4.6.

4.3. Fair Evaluation
The enterprise of this chapter was inspired by Manning (2006), who explicitly brings up the problem
of double penalties in NER evaluation. Similar to the remarks above, he argues that one should not
optimize NER systems for F1 because the metric is dysfunctional for sparse annotations. Although
he focuses on named entity recognition, the same also holds for other types of labeled spans, e.g.,
chunks or syntactic constituents. As an alternative, Manning (2006) suggests the distinction of
different error types, which will be picked up and expanded upon in the next section (4.3.1). From
his considerations, it remains unclear, though, how these error types should be used to compare
different NLP systems, which is the topic of Section 4.3.2.

4.3.1. Fine-Grained Error Types
The traditional evaluation only considers true positives (TP), false positives (FP), and false negatives
(FN). However, example (13) already pointed out that a restriction to the latter two error types does
not reflect the actual annotation quality in the case of overlapping spans. FPs and FNs should
therefore be used exclusively to refer to 1:0 and 0:1 mappings as displayed in example (12). For
cases in which the system annotation overlaps with the target annotation but is not identical to it,
Manning (2006) suggests the distinction of three additional error types:
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LE (labeling error): Identical span, different label

BE (boundary error): Identical label, different (overlapping) span

LBE (labeling-boundary error): Different label, different (overlapping) span

The three additional error types are illustrated in example (14).28 As intended, their application
resolves the problem of double penalties because one annotation now counts as one error instead of
two. Moreover, they enable a more detailed error analysis and allow to distinguish between entirely
missing or superfluous annotations and almost correct annotations, which are often more frequent
than actual FPs and FNs (Manning 2006; Ortmann 2021a; Ortmann 2021b).

(14)
Target: | A | | A | | A |
System: | B | | A | | B |

1 LE 1 BE 1 LBE

In the case of boundary errors, it is possible to make the evaluation even more fine-grained by
distinguishing whether the system’s annotation is smaller (BEs) or larger (BEl) than the target span
or whether it overlaps with it (BEo). Example (15) displays the three sub-types of boundary errors,
which provide even more details on a system’s weaknesses, indicating possible starting points for
improvement.29

(15)
Target: | A | | A | | A |
System: | A | | A | | A |

1 BEs 1 BEl 1 BEo

Annotations that overlap with two (or more) spans, at least one of which has the same label, should
be counted as BE and not LBE. In total, for n target annotations and m system annotations, the
number of true positives plus errors always lies between max(n,m) and n+m. Both examples in
(16) should thus yield three errors.

(16) Target: | A | B | | A | B | B |
System: | A | B | B | | A | B |

2 BEs + 1 BEo 2 BEl + 1 BEo
28In the literature, even more error types have been introduced. While some of them are only relevant to a specific

annotation type (e.g., Braşoveanu et al. (2018) with an error taxonomy for Named Entity Linking), other categories
like errors in the gold standard (Manning 2011) can only be recognized with a manual analysis. For practical reasons,
these error types are not further discussed here. But if their frequency is known for a given data set, they could be
integrated into the analysis and calculation of metrics similar to the error types presented in this chapter.

29Depending on the intended application, it would also be possible to distinguish whether one of the system boundaries,
left or right, is identical to the target boundary to provide even more insight into the actual errors. For example, the
evaluation of antecedents in Chapter 7.1 is a case where the alignment of the right boundary is highly relevant. The
same distinctions as for boundary errors could also be made for labeling-boundary errors, but they would not provide
much additional information since label and span of the system annotation both differ from the target. Therefore,
LBE sub-types are not considered here.
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4.3.2. Fair Precision, Recall, and F1-Score
The fine-grained distinction of error types as described in Section 4.3.1 solves the problem of double
penalties and enables a more detailed error analysis. However, the raw number of errors is unsuitable
for comparing different systems, especially across different data sets. Instead, it would be desirable
to include these error types in the calculation of precision, recall, and F1-score. In Ortmann (2021a),
I argued that the additional error types refer to an existing annotation and should therefore count
as false positives for the calculation of F1-scores. Read et al. (2012), instead, count these kinds of
errors as false negatives to prevent double penalties. For the resulting F1-score, the decision makes
no difference since, mathematically, F1 only depends on the number of true positives and errors (cf.
Eq. 4.4).

F 1 =
2 ∗ Precision ∗Recall

Precision+Recall
=

2 ∗ TP
(2 ∗ TP ) + errors

(4.4)

However, counting the overlapping errors as either FPs or FNs makes recall and precision values
hard to interpret in a meaningful way. As each of the error types indicates a (partly) missing target
annotation and, at the same time, a (partly) incorrect system annotation, it seems more appropriate
to count the new error types as half FP and half FN (cf. Eq. 4.5).

1LE = 1BE = 1LBE = 0.5FP + 0.5FN (4.5)

As explained above, this does not change the F1-score, but it renders precision and recall values
more meaningful again.

Weighted Evaluation Depending on the application, it could also be useful to make the evalua-
tion more nuanced by introducing specific weights for different error types. For example, boundary
errors could be considered less severe, e.g., in a search context because the target span is still found
by the system. In this case, BEs could, for example, be counted as 50% true positives as in equation
(4.6).

1BE = 0.5TP + 0.25FP + 0.25FN (4.6)

When different types of boundary errors are distinguished, the evaluation could be even more differ-
entiated (cf., e.g., Eq. 4.7) to more precisely reflect true annotation quality in precision and recall.
I will use weighted metrics for the evaluation of antecedents in Chapter 7.1. It is important to
note, though, that contrary to equation (4.5), the weighting in equations (4.6) and (4.7) also affects
F1-scores because it increases the total number of TPs.

1BEs = 0.5TP + 0.5FN

1BE l = 0.5TP + 0.5FP (4.7)

1BEo = 0.5TP + 0.25FP + 0.25FN
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Algorithm 1: Traditional error type identification
Input: A set of target spans T and system spans S. Spans are

triples of label l, begin b, and end e
Output: Number of TP, FP, and FN per label and overall

1: Count every span t ∈ T ∩ S as TP for lt
2: Count every span t ∈ T \ S as FN for lt
3: Count every span s ∈ S \ T as FP for ls
4: Sum up TPs, FPs, and FNs across labels
5: Return results per label and overall

4.4. Algorithm for Error Identification
For traditional evaluation with only two error categories (false positives and false negatives), the
algorithm to identify error types is simple. If a target span was recognized by the system, it counts
as TP. Spans only present in the system output are FPs, and target spans missing in the system
annotation are FNs (cf. Algorithm 1). The different categories can be identified for individual labels
or all labels overall. Identifying the fine-grained error types is more complicated. In particular, there
are the following difficulties:

(i) One target span can overlap with more than one system span and vice versa. Nevertheless,
the number of TPs plus errors should always lie between max(n,m) and n+m for n target
and m system annotations, i.e., every system annotation and every target annotation should
count exactly once. To achieve this, spans are removed from the input list as soon as their first
matching counterpart is found. To ensure that other potential counterparts are also matched
to the correct span, the algorithm must keep track of the already matched tokens in each span.
In combination, these two steps allow matching multiply overlapping spans to their correct
counterparts without counting any span twice.

(ii) There are cases in which one span could correspond to different error types, e.g., BE and
LBE as in example (16). As described in Section 4.3.1, BEs should be preferred over LBEs.
The algorithm will therefore proceed in four incremental steps, starting with easy to identify
spans with 1:1 mappings (TPs and LEs, step 1), followed by boundary errors (step 2), and
labeling-boundary errors (step 3), and finally the remaining 1:0 and 0:1 mappings (FNs and
FPs, step 4).

(iii) Per-label evaluation is also less straightforward for the more fine-grained error types. There
are two main problems:

1. Which error type should be assigned to multiply overlapping spans? In the following,
each span is counted as the first matching error type.

2. Should LE and LBE count as errors for the target or the system label? One possible
solution is to put the focus on the target labels, i.e., to evaluate how the target labels
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were annotated by the system. In this case, all errors (except false positives) count for
the label of the target span they are matched to. The resulting error distribution then
gives a detailed picture of how well the target spans were identified by the system. If the
focus is on the system annotation, the same process could be applied to the system labels.
A confusion matrix can represent both directions at the same time.

(iv) In evaluating hierarchical annotations (e.g., constituency trees), it is common practice to com-
pare the annotated spans and labels while ignoring the hierarchical structure.30 For example,
an NP is considered correct if it spans across the correct tokens, independently of the presence
or absence of intervening nodes like adjective phrases, etc. The same also applies to other
multi-level annotations, e.g., several stacked entities. Hence, the traditional evaluation from
Algorithm 1 works just the same for nested spans as for flat annotations.
The identification of the fine-grained error types, specifically BEs and LBEs, in nested struc-
tures is more complicated because it is not always clear which spans should be compared with
each other. While the classification is likely no problem for humans in most of the cases, an
algorithm will sometimes only approximate the optimal match of system and target spans if it
shouldn’t become too complex or slow. Here, two practical decisions are made:

1. It is known that systems are usually more accurate at identifying shorter spans compared
to longer ones (cf. Bastings and Sima’an (2014) on constituency parsers). Therefore, in
each step, the algorithm starts with the shortest span to speed up the search for the correct
match of system and target annotation.

2. If one span can be matched to two (or more) other spans, the most similar one is con-
sidered first. Similarity, here, is defined as the maximum number of shared tokens and
the fewest differing tokens. If multiple spans are equally similar, the shortest one is cho-
sen. If multiple spans are still equally similar, the first one in the input is taken, which
corresponds to the left-most one if sentences are read from left to right.

Based on the previous considerations, Algorithm 2 identifies the fine-grained error types from Sec-
tion 4.3.1 in flat and hierarchical spans. The resulting error counts can be used to calculate precision,
recall, and F1-score as detailed in Section 4.3.2. Table 4.2 shows an example of the algorithm’s
output.31

30For the evaluation of tree structures, other approaches also exist that take into account the complete paths within the
tree, e.g., the leaf-ancestor metric or dependency-based metrics, cf. Rehbein and Genabith (2007). Although these
metrics are more robust against differences in annotation schemes, the PARSEVAL metric (Black et al. 1991) is still
commonly used for parser evaluation.

31A reference implementation of the algorithm as well as the data sets and detailed results from Section 4.5 were provided
in the paper’s repository at https://github.com/rubcompling/FairEval. The code is also integrated
into the CLASSIG pipeline that accompanies this thesis.
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Algorithm 2: Identification of fine-grained error types in labeled spans
Input: A list of target spans T and system spans S, sorted by span length from shortest to longest.

Each span is a 4-tuple of label l, begin b, end e, and a set of included tokens toks (1..n).
b = e for spans of length 1.

Output: Number of TP, FP, LE, BE, BEs, BEl, BEo, and FN per label and overall
Function definitions:

Let BEtype(t, s) return the correct type of BEs, BEl, and BEo for spans t and s
Let getBE(t, s ∈ S) return the most similar span s ∈ S for t with lt = ls and |tokst ∩ tokss| ≥ 1
Let getLBE(t, s ∈ S) return the most similar span s ∈ S for t with lt ̸= ls and |tokst ∩ tokss| ≥ 1
Let updatetoks(tokst, tokss) set tokst = tokst \ tokss and tokss = tokss \ tokst
Let move(t, T → M) remove t from T and add it to M

Step 1: Count 1:1 mappings (true positives and labeling errors)
1: Count identical spans t ∈ T = s ∈ S as TP for lt and remove t from T and s from S
2: Count spans with lt ̸= ls, bt = bs, et = es as LE for lt and remove t from T and s from S

Step 2: Count boundary errors
3: Create empty lists M t and M s for matched spans
4: For each t ∈ T :
5: Count getBE(t, s ∈ S) as BEtype(t, s) for lt
6: Update matches: updatetoks(tokst, tokss), move(t, T → M t), and move(s, S → M s)

7: For each t ∈ T :
8: Count getBE(t, s ∈ M s) as BEtype(t, s) for lt
9: Update matches: updatetoks(tokst, tokss) and move(t, T → M t)

10: For each s ∈ S:
11: Count getBE(s, t ∈ M t) as BEtype(t, s) for lt
12: Update matches: updatetoks(tokst, tokss) and move(s, S → M s)

13: Calculate BE = BEs + BEl + BEo

Step 3: Count labeling-boundary errors
14: For each t ∈ T :
15: Count getLBE(t, s ∈ S) as LBE for lt
16: Update matches: updatetoks(tokst, tokss), move(t, T → M t), and move(s, S → M s)

17: For each t ∈ T :
18: Count getLBE(t, s ∈ M s) as LBE for lt
19: Update matches: updatetoks(tokst, tokss) and move(t, T → M t)

20: For each s ∈ S:
21: Count getLBE(s, t ∈ M t) as LBE for lt
22: Update matches: updatetoks(tokst, tokss) and move(s, S → M s)

Step 4: Count false positives and negatives
23: Count every t ∈ T as FN for lt
24: Count every s ∈ S as FP for ls
Step 5: Return results per label and the overall sum across labels
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4.5. Example Evaluation
To illustrate the application and results of the new evaluation algorithm, in this section, it is ap-
plied to three different tasks that require the identification of labeled spans: NER, chunking, and
topological field parsing.

1. Named Entity Recognition (NER)

• Annotation: Named entities are phrases that refer to entities such as people or places by means
of a proper name (Tjong Kim Sang and De Meulder 2003). The annotation is sparse, i.e.,
the majority of tokens does not receive a label. Multi-level annotations are possible but not
considered here.

• NLP tool: The NER component of the Stanza pipeline (Qi et al. 2020) with the germ-
eval2014 model.32

• Data: The test partition of the GermEval 2014 data set (Benikova et al. 2014). Since Stanza
does not support multi-level annotation, only top-level entities from the four main classes are
evaluated, yielding 6.178 named entities.

2. Chunking

• Annotation: Chunks are non-recursive, non-overlapping constituents from a sentence’s parse
tree (Sang and Buchholz 2000). Contrary to NER, most tokens receive a label. The annotation
is non-hierarchical per definition.

• NLP tool: The neural sequence labeling tool NCRF++ (Yang and Zhang 2018)33 with a model
from Ortmann (2021a). The model was trained on the German newspaper corpus TüBa-D/Z
(Telljohann et al. (2017); 80% training, 10% development data)34 with characters, tokens, and
POS tags as features and pre-trained word embeddings (cf. Chapter 6.1).

• Data: The remaining 10% of the TüBa-D/Z corpus with 101.304 chunks of 16 different types.

3. Topological Field Parsing

• Annotation: Topological fields are linear syntactic structures on the clause level of German
sentences. Fields can be understood to form a tree structure, i.e., the annotation is hierarchical,
and most tokens receive a label.

32Stanza version 1.2, https://stanfordnlp.github.io/stanza/
33https://github.com/jiesutd/NCRFpp
34Release 11.0, chunked version
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• NLP tool: The unlexicalized Berkeley parser (Petrov et al. 2006)35 with a model from Ort-
mann (2020). It was trained on 80% of the TüBa-D/Z corpus (Telljohann et al. (2017); cf.
Chapter 5).36

• Data: 10% of the TüBa-D/Z corpus with 63.824 fields of 13 different types.

The results for traditional vs. fair evaluation of the three annotation tasks are displayed in Table 4.1.
F1-scores differ between 1–3.7 percentage points. The largest difference is observed for the recog-
nition of named entities, while the difference is smallest for chunks. Except for NER, recall values
differ slightly more between evaluation methods than precision. With respect to the labels, the
largest differences are found for entities of type ORG, adjective and foreign language chunks, and
coordination and post-fields.

Figure 4.137 shows the distribution of error types for the three annotation tasks according to
traditional and fair evaluation. For NER and chunking, the traditional evaluation identifies 44% of
the errors as FP and 56% as FN, while for topological field parsing, FPs are more frequent with
54% compared to 46% FNs. However, when the more fine-grained error types are considered, the
rate of actual false positives and negatives shrinks substantially. The highest proportion of actual
FNs is observed for the sparse NER annotation and the highest proportion of actual FPs for the
hierarchical fields. For chunking, actual FPs and FNs together make up only 2% of all errors.

On the other hand, boundary errors, which traditionally count as two errors (1 FP and 1 FN),
make up between 14% (NER) and 59% (chunking) of the errors. In most of these cases, the system
annotation includes the target span (57%–73%) or vice versa (27%–42%). Errors of type BEo are
extremely rare. Interestingly, labeling errors occur especially for the sparse named entities: 30% of
the errors are due to entities that were recognized correctly but assigned the wrong label. Labeling-
boundary errors are more frequent for chunking (34%).

So, although traditional evaluation suggests similar or even identical error distributions for the
three tasks, an analysis of the fine-grained error types reveals that the systems actually make very
different kinds of errors. While the NER system should be optimized especially for assigning the
correct label and reducing the number of missing entities, the other two systems can gain more by
improving the accuracy of span boundaries.

Another advantage of fair evaluation concerns the results for individual labels (cf., e.g., Table 4.2
for NER). While traditional evaluation only counts true positives and (seemingly) missing and su-
perfluous spans without capturing the actual relation between system and target annotation, the
fine-grained error structure of fair evaluation also enables the creation of a confusion matrix (cf.
Figure 4.2). For system developers and linguists alike, this matrix provides valuable information
about which labels are confused most often and which labels contribute to which error types. For ex-
ample, organizations are the most frequently overlooked named entities, noun chunks are the main
source of boundary errors, and middle fields are especially prone to have incorrect boundaries or
be false positives.
35https://github.com/slavpetrov/berkeleyparser
36Release 11.0, CoNLL-U Plus version
37The plots in this thesis have been created with the R package ggplot2, https://ggplot2.tidyverse.org/.
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Precision Recall F1

NER Trad. 86.66 83.51 85.05
Fair 90.42 87.23 88.80

Chunks Trad. 97.20 96.39 96.79
Fair 97.86 97.86 97.86

Topol. Trad. 93.41 94.27 93.84
Fields Fair 94.78 95.92 95.35

Table 4.1.: Results for traditional vs. fair evaluation of the different annotation tasks in percent.

Figure 4.1.: Distribution of error types for the three annotation tasks according to traditional vs.
fair evaluation.

38



Chapter 4: FairEval

Label TP FP LE
BE

LBE FN Prec Rec F1BEs BEl BEo BEall
LOC 2132 81 56 29 28 0 57 40 98 93.12 92.43 92.78
ORG 1002 87 76 16 27 0 43 48 167 85.46 80.00 82.64
OTH 473 48 89 15 26 3 44 44 142 77.60 67.24 72.05
PER 1552 37 31 11 25 0 36 23 55 94.98 93.95 94.46
Overall 5159 253 252 71 106 3 180 155 462 90.42 87.23 88.80

Table 4.2.: Raw frequencies of TPs and errors in the NER annotation per label and overall as
output by Algorithm 2. In addition, the rightmost columns show fair precision, recall, and F1
values for individual labels.

4.6. Discussion
Evaluation serves the purpose of comparing and improving NLP systems, but optimizing systems
for the traditional metrics can lead to undesirable effects due to double penalties for close-to-correct
annotations. In this chapter, I have presented an algorithm for the identification of more fine-
grained error types in flat and multi-level annotations of labeled spans to ensure that every anno-
tation counts only once. The algorithm was supplemented by a suggestion on how to calculate
meaningful precision, recall, and F1-scores based on these error types. In combination, the de-
scribed procedure allows for a more realistic evaluation, which prevents double penalties while, at
the same time, providing more information about possible improvements.

The exemplary application to three different annotation tasks has illustrated that annotations that
look the same through the lens of traditional evaluation can actually result from very different error
distributions. Future studies should consider using the presented algorithm to optimize systems for
sensible metrics and gain more insight into their actual weaknesses. In the remainder of this thesis,
the new method will be used to evaluate the different annotations and I will report FairEval scores
unless stated otherwise.

However, the comparison has also shown that F1-scores are higher according to the new eval-
uation method because labeling and boundary errors are no longer multiply penalized. Since the
objective of the algorithm is not to make systems ‘look better’, results that are gained in this way
should be reported alongside established evaluation metrics to ensure comparability. I will include
traditional evaluation results for the different annotations in the appendix.
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Figure 4.2.: Confusion matrices for the (main) labels of each annotation task. Only errors are
included, i.e., the diagonal displays boundary errors. False positives and negatives are shown in
the bottom row and the right-most column, respectively. The remaining cells represent labeling
and labeling-boundary errors.
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CHAPTER 5

Topological Field Analysis38

As defined in Chapter 2, a constituent is considered extraposed if it has been ‘moved’ from its base
position in the middle field of the sentence to the post-field. Consequently, identifying topological
fields is the first prerequisite for the automatic analysis of extraposition. In this chapter, my ex-
ploration of topological field parsing in modern and historical German is presented. Section 5.1
begins with an overview of the topological field model and explains the tagset used in this thesis.
Section 5.2 summarizes the related work on automatic topological field identification, and Sec-
tion 5.3 describes the training and test data for the studies. The implementation is split into two
steps, starting with the identification of sentence brackets in Section 5.4 before adding the other
topological fields in Section 5.5. The chapter concludes with a discussion in Section 5.6.

5.1. The Topological Field Model
The topological field model (Höhle 2019; Wöllstein 2018) is a widely used theory-neutral frame-
work for the description of syntactic structures in German sentences. While German is considered
to have a relatively free word order, the topological fields provide a clear structure on the clause
level. In German, there are three different clause types, which are characterized by the position of
the finite verb. Figure 5.1 illustrates the linear order of fields for verb-first (V1), verb-second (V2),
and verb-last (VL) clauses. In this thesis, a simplified version of the annotation scheme suggested
by Telljohann et al. (2017) is used.39 The following fields are considered:

VF The pre-field (Vorfeld) of the sentence is obligatory in V2 clauses and consists of exactly one
constituent.40 Often this is the subject, but it can also be almost any other, possibly complex
constituent, e.g. conditional clauses.

38The content of this chapter is adapted from my paper Ortmann (2020): Automatic Topological Field Identification
in (Historical) German Texts and complemented with an unpublished pilot study on sentence bracket identification,
additional test data, the News1 model from Chapter 6.2, and FairEval results.

39There are different opinions about the boundaries of specific fields, e.g., whether relativizers belong to the left bracket
or the middle field and if certain constituents are placed in the middle field or the post-field when the right bracket
is empty. For practical reasons, I will follow the guidelines by Telljohann et al. (2017) because the only available
training resources are annotated according to their scheme.

40For possible exceptions, consider the discussion in Zifonun et al. (1997).
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Figure 5.1.: Simplified topological field model for verb-first (V1), verb-second (V2), and verb-last
(VL) clauses with mandatory (blue) and optional fields (light blue, dashed lines). Positions that
are never occupied are colored in light gray. The coordination field KOORD is abbreviated to
KO here.

LK The left sentence bracket (Linke Klammer) is obligatory in V1 and V2 clauses and optional
in VL clauses. In V1 and V2 clauses, it contains a single finite verb, whereas in VL clauses
the position can, instead, be filled with a complementizer and, hence, is often also referred to
as C. Following Telljohann et al. (2017), it can be occupied by subordinating conjunctions and
relative and interrogative pronouns or phrases.

MF The middle field (Mittelfeld) is surrounded by the LK to the left and/or the RK to the right
and can contain any number of constituents. Here, it subsumes the MF and MFE fields from
Telljohann et al. (2017).

RK The right sentence bracket (Rechte Klammer) is often referred to as verb complex, as it contains
the non-finite verbs, verb particles, and in VL clauses also the finite verb. In this thesis, the label
RK is used for the VC and VCE fields from Telljohann et al. (2017).

NF The post-field (Nachfeld) is located to the right of the (possibly empty) RK and can contain any
number of constituents. While it is the default position for certain types of subclauses, it often
also comprises other ‘heavy’ elements like relative clauses that are extraposed from the middle
field.

KOORDThe coordination field (Koordinationsfeld) subsumes the KOORD and PARORD fields from
Telljohann et al. (2017) and contains all conjunctions that coordinate sentences, clauses, or fields.
The conjuncts themselves are not evaluated here.

LV Left dislocations (Linksversetzung) contain material that is moved in front of the pre-field.
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‘This means that one can gather more and more information around a hypothesis or a point of view that
strengthens it but does not definitely prove it.’

Figure 5.2.: Example sentence from the Modern data set with nested topological fields. The coor-
dination field KOORD is abbreviated to KO here.

Except for the sentence brackets and the coordination field, all fields may contain embedded clauses.
Figure 5.2 shows an example annotation with nested topological fields from the Modern data set of
this thesis.

When applying the topological field model to data from different time periods, it is important
to note that the sentence structure in historical texts was still subject to change and might differ
substantially from modern data. As already mentioned in Chapter 2, especially the right sentence
bracket only emerged over time. Nevertheless, it seems reasonable to annotate historical data with
the positioning of the elements that make up the sentence brackets and surrounding fields today, as
this eventually allows studying their development from predecessor structures over time.

5.2. Related Work
There have been a number of different approaches to the automatic identification of topological
fields in German. The first studies (Neumann et al. 2000; Müller and Ule 2002; Hinrichs et al.
2002) used rule-based approaches, implemented with finite-state cascades, to identify the sentence
brackets and, based on this, the other topological fields. For this rule-based approach, Neumann
et al. (2000) report an overall F1-score of about 87%. Veenstra et al. (2002) show that for sentence
brackets, i.e., fields that contain a very restricted set of elements, such rule-based systems can yield
competitive results.

For the identification of more complex topological fields and embedded clauses, using (prob-
abilistic) parsers seems more promising: Becker and Frank (2002) train a non-lexicalized chart
parser on a probabilistic context-free grammar and achieve labeled recall and precision values of
about 93%. The highest values are observed with >99% for left sentence brackets and about 96%
for right brackets. Klatt (2004) describes a bi-directional bottom-up parsing approach for non-
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recursive topological field recognition, resulting in an overall F1-score of about 95%. Kok and Hin-
richs (2016) treat topological field annotation as a sequence labeling task. They use a bi-directional
LSTM and achieve an overall accuracy of 97% for non-recursive topological field identification. For
recursive topological field annotation, Cheung and Penn (2009) apply the Berkeley parser (Petrov
et al. 2006) and report F1-scores of 95% on the Tüba-D/Z corpus and 91% on the NEGRA corpus.
They observe the best results for sentence brackets with F1-scores >98%. F1-scores of about 95%
or more are also achieved for coordinations and the pre- and middle field. The post-field is rec-
ognized less reliably with about 83%, and left dislocations with only 7%. All of these approaches
focus on standard German (newspaper) text.

Prior to my topological field study (Section 5.5; Ortmann 2020), there had been only two attempts
to automatically identify topological fields in historical data. Using CoNLL-RDF and SPARQL,
Chiarcos et al. (2018) implement a deterministic rule-based parser for topological field identification
in Middle High German. It relies on grammars and expert knowledge and makes use of the manual
annotations provided in the Reference Corpus of Middle High German (ReM; Klein et al. 2016).
However, in the absence of a manual gold standard annotation, the accuracy of the parser is not
evaluated and thus remains unclear. Hinrichs and Zastrow (2012) annotate texts from the German
Gutenberg project from the 13th to 20th century with the Berkeley parser, trained on the TüBa-D/Z
corpus. Since they do not provide evaluation results for the syntactic analysis, the annotation quality
of their TüBa-D/DC corpus remains unclear as well. The results that are reported in this chapter
thus offer the first evaluation of automatic topological field analysis for historical German.

Applications of topological field annotation range from improving POS tagging (Müller and
Ule 2002), chunking (Hinrichs et al. 2002), and HPSG parsing (Frank et al. 2003) to improving
anaphora resolution (Becker and Pecourt 2002), machine translation of idiomatic phrases (Anasta-
siou and Čulo 2007), and dependency parsing (Kok and Hinrichs 2016). In this thesis, the topo-
logical field analysis is used to identify extraposition (Chapter 7).

5.3. Data
Although the topological field model is widely used for the description of syntactic structures in
German, only few corpora provide topological field annotations. The Tüba-D/Z corpus (Telljohann
et al. 2017) is the largest available data set with manually annotated topological fields. Discounting
headlines and other fragments, which do not receive a topological field annotation, the training sec-
tion contains about 74k sentences with 491k fields. Table 5.1 gives an overview of the training data.
The test section of the TüBa-D/Z corpus comprises 9k sentences with about 61k fields, including
27k sentence brackets. Most of the studies described in Section 5.2 use previous versions of this
corpus for training and/or evaluation.

To investigate how well the automatic identification of topological fields can be transferred to
other domains, two additional data sets for modern German are included in my studies. Discounting
fragments, the TüBa-D/S corpus (Hinrichs et al. 2000) comprises 19k sentences with 107k fields
(45k sentence brackets). The Modern data set (Ortmann et al. 2019) contains 462 sentences that
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Model #Docs #Sents #Toks #Fields
Punct 3,075 73,884 1,534,476 491,806
NoPunct 3,075 73,884 1,316,329 491,806
News1 3,075 83,515 1,566,250 491,806

Table 5.1.: Overview of the TüBa-D/Z training data for each model in this chapter. For models
Punct and NoPunct, only sentences with a topological field annotation are included. Model
News1 is equivalent to the model for constituency parsing in Chapter 6.2 and contains only
sentences with a constituency parse. The number of fields refers to fields of the seven types
from Section 5.1, even though the original field labels from Telljohann et al. (2017) are used
during training and mapped to the smaller tagset of this thesis for evaluation (cf. Section 5.4.1).
For the NoPunctmodel, all tokens tagged as punctuation have been removed from the training
set.

Corpus #Docs #Sents #Toks #Words #Brackets
TüBa-D/Z 364 9,240 189,038 161,893 27,432
Spoken 14 19,522 263,294 218,561 45,245
Modern 78 462 7,224 6,095 1,311
HIPKON 53 342 4,210 3,747 804
DTA 29 417 16,307 14,063 2,245

Table 5.2.: Overview of the test data for sentence bracket identification. Only sentences containing
at least one sentence bracket are included in the evaluation.

are not fragments, with a total of 3k fields (1.3k sentence brackets).
Besides the modern data, two historical German corpora are used to assess whether topological

fields can be identified automatically in texts from different time periods – without any historical
training data available. The HIPKON corpus (Coniglio et al. 2014) contains 342 annotated sen-
tences with 1.8k fields, including 800 sentence brackets. Because HIPKON was created for the
investigation of post-fields, only sentences with a post-field are annotated. The second historical
data set DTA (BBAW 2021) includes 417 sentences with 4.8k topological fields (2k sentence brack-
ets). Tables 5.2 and 5.3 give an overview of the test data for sentence bracket identification and
topological field annotation, respectively.

Figure 5.3 displays the distribution of topological fields in the test data. While the historical
data sets contain about equal proportions of left and right brackets, left sentence brackets are more
frequent in the modern data sets. Especially the spoken data set contains a lower proportion of
right sentence brackets (31% of the brackets), suggesting more empty right brackets or generally
less complex sentences. An indication of the latter is the slightly lower proportion of post-fields
in the spoken data with less than 6%, compared to newspaper (7%) or other modern data (8%).
The historical data sets exhibit more post-fields, with about 10% in the DTA and almost 19% in the
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Corpus #Docs #Sents #Toks #Words #Fields
TüBa-D/Z 364 9,276 189,352 162,149 61,779
Spoken 14 19,522 263,294 218,561 107,545
Modern 78 462 7,224 6,095 3,052
HIPKON 53 342 4,210 3,747 1,858
DTA 29 417 16,307 14,063 4,838

Table 5.3.: Overview of the test data for topological field parsing. Only sentences containing at
least one field of the seven types from Section 5.1 are included in the evaluation.

HIPKON corpus. Due to its special focus on the post-field, HIPKON also has a lower proportion of
middle fields than the other data sets, i.e., more cases in which the right bracket immediately follows
the left one. Left-dislocations and coordination fields are the least frequent fields, especially in the
modern newspaper data.

5.4. Identification of Sentence Brackets
As a first step towards the automatic topological field analysis in (historical) German, I started with
the identification of sentence brackets. The schematic depiction of the topological field model in
Figure 5.1 illustrates the central role of the sentence brackets. Not only do they determine the sen-
tence structure (V1, V2, or VL). They also delimit the other fields, thus providing the basis for a
more in-depth syntactic analysis of a given sentence by reducing ambiguity for further annotation.
In addition, the brackets can only contain a limited set of elements, which presumably makes them
easier to recognize for automatic algorithms and may ensure the necessary accuracy for subsequent
annotations and analyses. If it was possible to automatically identify the sentence brackets in histor-
ical texts with high precision, this would be an important first step towards a complete topological
field analysis of historical data.

In this section, I first report the results of an unpublished pilot study in which I tested different
annotation methods for identifying the left and right sentence bracket (Section 5.4.1). The remain-
der of the section (5.4.2) then focuses on one annotation method and replicates the pilot study with
fair evaluation on the data sets from this thesis.

5.4.1. Pilot study
As described in Section 5.2, various methods have been successfully applied to the recognition
of sentence brackets (and other topological fields) in modern German. Since no prior results are
available for historical German and no historical training data exists, I conducted an exploratory pilot
study to identify suitable approaches for sentence bracket annotation in both modern and historical
data.

46



Chapter 5: Topological Field Analysis

Figure 5.3.: Distribution of topological fields in the test data from Table 5.3.

Table 5.4 gives an overview of the two modern and two historical test sets that were used in the
pilot study. The compilation of data sets slightly differs from Table 5.2. In particular, the pilot
study did not include the Spoken data, and I used a different, larger sample from the German Text
Archive with 4k sentences and 40k tokens that were manually tagged as part of a sentence bracket.
For practical reasons, I did not re-run the complete pilot study with other data sets. Instead, I report
the original results and focus on selecting a suitable method, followed by updated experiments with
the selected method and the data from Table 5.2 in Section 5.4.2.
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Corpus #Docs #Sents #Toks #LK #RK
TüBa-D/Z 364 10,527 199,691 16,885 14,886
Modern 78 559 7,642 845 622
HIPKON 53 342 4,210 407 464
DTAPilot 10 3,894 208,489 17,229 23,109

Table 5.4.: Overview of the test data from the pilot study. #LK and #RK are the numbers of tokens
that are labeled as (part of a) left sentence bracket and right sentence bracket, respectively.

Methods

Sentence brackets are non-complex topological fields that contain zero or more tokens but no (re-
cursively) embedded fields. The task of identifying sentence brackets can thus be understood as
either a tagging or a parsing problem. Consequently, the pilot study includes taggers and parsers
and probabilistic methods as well as a few rule-based approaches, most of which require expert
knowledge for creating rules. Table 5.5 gives an overview of the different methods. All probabilis-
tic methods are trained on the TüBa-D/Z training set with the original tagset from Telljohann et al.
(2017), which is mapped to the tags from Section 5.1 for evaluation. Becker and Frank (2002)
observe that this approach of training on more fine-grained and evaluating on coarser categories
can improve the results of probabilistic topological field parsers.

As word forms differ substantially between modern and historical texts and also within older
writings due to missing standardization, rules and models cannot be based on word forms (see the
discussion in Chapter 3). Instead, the methods operate on POS tags to ensure the applicability
to different text types and historical data. Besides the lack of orthography, older writings also do
not follow modern punctuation rules. Punctuation marks help to determine clause boundaries and,
thus, sentence brackets in modern German (Becker and Frank 2002). But it could be problem-
atic if methods heavily rely on the presence of punctuation marks, which do not exist or are used
differently in historical texts and, to some degree, in modern non-standard data. Therefore, all
probabilistic models are also trained on the training set after removing punctuation from it. The
following methods are included in the pilot study:

N-Gram Tagger As a baseline, a unigram tagger as implemented in the NLTK41 is used, which
simply assigns the most frequent tag (left sentence bracket, right sentence bracket or none) to each
token. Furthermore, a bigram and trigram tagger with bigram and unigram backoff models are
tested.42

41Version 3.2.1, https://www.nltk.org/
42For all n-gram taggers, see http://www.nltk.org/_modules/nltk/tag/sequential.html
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Tagger Parser Rule-based Probabilistic Expert Knowledge
N-Gram ✓ - - ✓ -
Brill ✓ - ✓ ✓ -
Bayes ✓ - - ✓ -
Logit ✓ - - ✓ -
FST ✓ ✓ ✓ - ✓
Regexp - ✓ ✓ - ✓
CFG - ✓ ✓ - ✓
Berkeley - ✓ - ✓ -
Stanford - ✓ - ✓ -
Benepar - ✓ - ✓ -

Table 5.5.: Overview of the automatic methods that are evaluated in the pilot study.

Brill Tagger The Brill tagger (Brill 1992) combines the results of an initial tagger with an ordered
set of learned context-dependent rules to come up with an improved annotation. The implementa-
tion is taken from the NLTK43 using default settings and the pre-defined rule template fntbl37.
The template consists of 37 different combinations of the current word and tag and the three pre-
ceding and following words and tags. For the purpose of this study, POS tags are treated as input
words and sentence brackets as tags. The unigram tagger is chosen as initial tagger because, in com-
bination with the Brill tagger, it achieves the best F1-score of all n-gram taggers on the TüBa-D/Z
development data.

Naive Bayes Classifier The NLTK also offers an implementation of the Naive Bayes algorithm,44

which assigns the most likely label to each token based on an arbitrary set of features. Using the
TüBa-D/Z development data, the optimal feature set is determined. When punctuation is retained,
it includes the POS tags of the previous, the current, and the following token. If punctuation is
removed, the POS tags of the three preceding tokens, the current POS tag, and the POS tag of the
next token are used.

Logit Classifier As a second classifier, the logistic regression classifier from scikit-learn45 is in-
voked via the NLTK sklearn wrapper,46 with the options lbfgs solver, multinomial classification,
and maximally 500 iterations to converge. The feature set includes the three preceding, the current,
and the three following POS tags.
43http://www.nltk.org/_modules/nltk/tag/brill.html
44http://www.nltk.org/_modules/nltk/classify/naivebayes.html
45Version 0.21.2, https://scikit-learn.org/stable/modules/generated/sklearn.linear
_model.LogisticRegression.html

46http://www.nltk.org/_modules/nltk/classify/scikitlearn.html

49

http://www.nltk.org/_modules/nltk/tag/brill.html
http://www.nltk.org/_modules/nltk/classify/naivebayes.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
http://www.nltk.org/_modules/nltk/classify/scikitlearn.html


Chapter 5: Topological Field Analysis

Finite-State Transducer Finite-state transducers are used in several studies described in Sec-
tion 5.2, but their exact architecture and transitions remain unclear. Therefore, the FST is imple-
mented from scratch with the python library fysom47 and optimized on the development data set.
The transducer is deterministic and non-recursive but allows for embedded clauses. It is robust
against ungrammatical sentences or fragments, thus enabling partial analyses. The transition ta-
ble and a simplified graphical representation of the FST can be found in the appendix (Table A.5,
Figure A.1).

Regexp Parser The regular expression parser as implemented in the NLTK chunk package48

successively applies a set of context-sensitive regular expressions to an input string. For the identi-
fication of sentence brackets, six simple rules are used (see Figure A.2 in the appendix). To reduce
the amount of false positives, the Regexp parser is only applied to sentences that contain at least
one verb.

CFG Parser The CFG parser is a chart parser from the NLTK,49 which uses a bottom-up left-
corner strategy and a basic handwritten context-free grammar optimized on the development data
(see Figure A.3 in the appendix). For reasons of computational efficiency, the implementation
provided by the NLTK is slightly modified to always return the first possible parse from the chart.
Also, only sentences that contain at least one verb get parsed. The impact on the results should
be moderate as, in this pilot study, only the sentence brackets are evaluated and not the complete
structure of the parse trees.

Berkeley Parser The pilot study also includes two PCFG parsers. The Berkeley parser (Petrov
et al. 2006)50 is an unlexicalized, latent variable-based parser that shows promising results for the
identification of sentence brackets in modern newspaper text (Cheung and Penn 2009). To train the
parser, the training data is converted to a treebank format and intermediate nodes are introduced
to match the required input format with POS tags being the leaves of the tree (for an example,
see Figure 5.4).51 To run the Java-based Berkeley parser, it is invoked in interactive mode via the
command line and always returns the single best parse.52

47https://github.com/mriehl/fysom
48http://www.nltk.org/api/nltk.chunk.html
49https://www.nltk.org/_modules/nltk/parse/chart.html
50https://github.com/slavpetrov/berkeleyparser
51Training options: java -Xmx1024m -cp BerkeleyParser-1.7.jar edu.berkeley.nlp.

PCFGLA.GrammarTrainer -treebank SINGLEFILE -out grammar.gr -path
treebank.txt

52java -Xmx10g -jar BerkeleyParser-1.7.jar -gr grammar.gr -maxLength 350
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TüBa-D/Z

(VF NE)
(LK VMFIN)
(MF ADV PIS PAV)
(VC VVINF)
COMMA
(NF

(C KOUS)
(MF APPR PPOSAT NN PPER PIS)
(VC VVPP VAFIN))

PUNCT

→

Modified training data

(S
(VF (OTH NE))
(LK VMFIN)
(MF (OTH ADV) (OTH PIS) (OTH PAV))
(VC VVINF)
(OTH COMMA)
(NF

(C KOUS)
(MF

(OTH APPR)
(OTH PPOSAT)
(OTH NN)
(OTH PPER)
(OTH PIS))

(VC (VC VVPP) (VC VAFIN)))
(OTH PUNCT))

Freudenthal wollte gestern nichts dazu sagen, ob bei ihren Prüfungen ihr etwas aufgefallen sei.
‘Freudenthal did not want to say anything yesterday about whether she had noticed anything during
her examinations.’

Figure 5.4.: To match the required treebank input format of probabilistic parsers without supply-
ing word forms, the topological field annotations from the TüBa-D/Z training data (left) have
to be modified (right). A sentence node S that also spans over unannotated tokens like punctu-
ation or fragments is added at the top-level of the tree. Furthermore, intermediate pre-terminal
nodes are inserted: For sentence brackets, the bracket label (here: LK, C or VC) is repeated
if necessary. For the other fields, the artificial label OTH is introduced. This way, each pre-
terminal corresponds to exactly one terminal symbol, as it would be the case with word forms
and POS tags. Originally, there is no internal structure in most fields. So, as a side effect,
the intermediate level also reduces the amount of rules the parsers have to learn, which can be
expected to improve grammar coverage (Becker and Frank 2002).
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Stanford Parser The Stanford parser (Rafferty and Manning 2008)53 is another commonly used
statistical constituency parser. For this study, it is trained as a vanilla PCFG parser on the same
treebank as the Berkeley parser using default options.54

Benepar Nowadays, many state-of-the-art parsers are neural network-based, especially depen-
dency parsers. There are also some neural constituency parsers, but their adaptation to unlexical-
ized topological field parsing is often difficult or impossible. One notable exception is the neural
Berkeley parser (Kitaev and Klein 2018).55 For this study, Benepar is trained on the same treebank
data as the PCFG parsers using default options.56 During training, the parser is also provided with
the TüBa-D/Z development data in treebank format.

Evaluation and Results

The evaluation procedure in the pilot study deviates from the other evaluations in this thesis with
respect to the evaluated units and metrics. Since the annotation of sentence brackets can be in-
terpreted as a tagging task, I performed a token-wise evaluation instead of comparing spans as in
subsequent evaluations. The output of the different methods is compared to the gold standard an-
notation, and tokens correctly recognized as (part of a) left or right bracket are counted as true
positives. If a system identifies a sentence bracket where there is none in the gold standard, this
counts as false positive. If a system misses a bracket or labels it with the wrong type, e.g., LK
instead of RK, this is considered a false negative. All other tokens are counted as true negatives.

While the TüBa-D/Z training data distinguishes between verbal and non-verbal left brackets, this
is not the case for all other corpora. During evaluation, both categories are unanimously mapped to
the same tag LK. All methods are evaluated on the original corpora from Table 5.4 and on the same
data after all punctuation has been removed from it. Table 5.6 gives an overview of the results.

For the newspaper corpus, which also serves as training and development data, many methods
achieve very good results. Except for the CFG parser, all automatic approaches reach overall pre-
cision values between 98.8% and 99.8% (recall: 83.5%–99.7%). The F1-score for all methods
is >90%. The best results are achieved by the neural and the conventional Berkeley parser, fol-
lowed by the Logit classifier and the Brill tagger, which all reach F1-scores >99%. The accuracy
lies above 97% for all systems. On the newspaper data, all systems (except CFG) perform slightly

53https://nlp.stanford.edu/software/lex-parser.shtml
54Training options: java -mx1600m -cp stanford-parser.jar edu.stanford.nlp.parser.

lexparser.LexicalizedParser -PCFG -vMarkov 1 -uwm 0 -headFinder
edu.stanford.nlp.trees.LeftHeadFinder -saveToSerializedFile grammar.ser.gz
-train treebank.txt

55https://github.com/nikitakit/self-attentive-parser
56The training took 99 epochs to complete for the model with punctuation and 121 epochs for the

model without. Training options: python3 src/main.py train --model-path-base
./models/topf --train-path treebank.txt --dev-path treebank_dev.txt
--use-words --predict-tags --batch-size 100
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Method TüBa-D/Z Modern Historical
Prec Rec F1 Acc Prec Rec F1 Acc Prec Rec F1 Acc

With punctuation
Unigram 98.96 83.49 90.57 97.23 98.33 84.53 90.91 96.75 90.03 69.23 78.27 92.55
Bigram 99.25 88.34 93.48 98.04 98.55 88.28 93.13 97.50 90.90 76.12 82.86 93.90
Trigram 99.40 89.03 93.93 98.17 99.02 89.64 94.10 97.84 90.94 76.74 83.24 94.01
Brill 99.71 98.52 99.11 99.72 99.51 97.00 98.24 99.33 90.41 88.39 89.39 95.93
Bayes 99.66 97.26 98.45 99.51 99.37 96.52 97.93 99.21 92.41 87.70 90.00 96.22
Logit 99.65 98.81 99.23 99.76 99.38 97.75 98.56 99.45 90.53 88.55 89.53 95.99
FST 99.12 95.40 97.22 99.13 98.59 95.36 96.95 98.85 91.78 78.99 84.91 94.56
Regexp 99.66 96.09 97.84 99.33 99.44 96.11 97.75 99.15 91.80 81.47 86.33 95.00
CFG 95.72 85.69 90.43 97.12 94.74 86.03 90.18 96.40 78.59 60.64 68.46 89.19
Berkeley 99.70 99.23 99.46 99.83 99.73 99.18 99.45 99.79 91.37 89.64 90.50 96.35
Stanford 98.82 95.79 97.29 99.15 99.02 96.11 97.54 99.07 90.90 77.38 83.60 94.12
Benepar 99.76 99.74 99.75 99.92 99.45 98.64 99.04 99.63 89.77 88.18 88.97 95.76

Without punctuation
Unigram 98.96 83.64 90.66 96.80 98.33 84.70 91.01 96.15 90.03 69.43 78.40 91.44
Bigram 99.36 87.67 93.15 97.61 98.70 88.18 93.15 97.02 90.74 74.12 81.59 92.52
Trigram 99.37 88.47 93.60 97.76 98.79 89.07 93.68 97.24 90.75 75.09 82.18 92.72
Brill 99.65 94.56 97.04 98.93 98.92 93.65 96.21 98.30 90.13 83.93 86.92 94.35
Bayes 99.05 95.77 97.38 99.04 98.26 96.38 97.31 98.78 90.75 83.33 86.88 94.37
Logit 99.57 97.40 98.48 99.44 99.17 97.54 98.35 99.25 90.03 85.78 87.85 94.70
FST 99.12 94.48 96.74 98.82 98.56 93.51 95.97 98.19 91.69 76.54 83.43 93.20
Regexp 99.66 93.67 96.58 98.77 99.50 95.15 97.28 98.78 91.72 80.75 85.89 94.06
CFG 96.44 88.13 92.10 97.20 95.85 88.46 92.01 96.47 79.73 62.30 69.95 88.06
Berkeley 99.78 99.14 99.46 99.80 99.59 98.77 99.18 99.62 91.49 87.70 89.55 95.42
Stanford 99.14 95.08 97.06 98.93 99.02 96.17 97.57 98.90 90.80 83.24 86.86 94.37
Benepar 99.79 99.64 99.71 99.89 99.38 98.63 99.01 99.54 89.98 86.71 88.31 94.87

Table 5.6.: Overall evaluation results for sentence bracket recognition with the different methods
(with and without punctuation) in the pilot study. The historical data includes the DTAPilot and
HIPKON sets from Table 5.4. The numbers for precision, recall, F1-score, and accuracy are
given in percent, and the highest values are marked in bold.
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better when punctuation marks are available, which confirms the observation of Becker and Frank
(2002) that punctuation marks help in identifying topological fields.

On the Modern data set, most systems perform slightly worse than on newspaper text. The
precision values lie between 98.3% and 99.7% (except CFG). The recall values range between
84.5% and 99.2%. Again, all systems achieve F1-scores >90% and accuracies >96%, with the
Berkeley parser and the neural Berkeley parser showing the best results. Although non-standard
data may not always contain correct punctuation, the presence of punctuation marks still improves
the results of most systems.

For the historical data, results are considerably worse. Especially the recall values are much lower
with only 60% to 90%, while the precision values lie mostly around 90% to 92%. The Berkeley
parser achieves the highest F1-score with 90.5%, followed by the two classifiers and the Brill tagger.
Interestingly, the performance differs significantly between the two historical corpora. While all
methods reach F1-scores between 94% and almost 98% on the HIPKON corpus, the results for the
DTAPilot texts range only between 67% and 90%. Punctuation seems to be helpful for the DTAPilot
data, whereas several systems achieve better results if punctuation is removed from the HIPKON
corpus beforehand, supporting the hypothesis that deviations from modern punctuation rules can
be detrimental to the recognition of sentence brackets.

To understand the large differences between the two historical data sets, I exemplarily inspected
the annotations of the Berkeley parser for the DTAPilot sample. The manual analysis reveals that
many errors for both bracket types in the DTAPilot seem to be caused by POS tagging errors, which
are quite prevalent in the automatic annotation provided by the German Text Archive (cf. Chap-
ter 3.2). Unfortunately, several potential bracket elements contribute to these high POS error rates
and lead to false positive and negative sentence brackets. For example, false negative LKs are
caused by relative pronouns that are incorrectly tagged as articles as in example (17), or conjunc-
tions that are mistaken for adverbs or prepositions as in example (18). On the other hand, false
positive LKs can be triggered, e.g., by demonstratives that are incorrectly tagged as relative pro-
nouns or nouns, and adjectives that are tagged as finite verbs as in example (19).

(17) denen / die/*ART ſolches thun
‘those who do such things’

(18) bis/*APPR dieſer [...] eine Ausnahme verdienet
‘until this one deserves an exemption’

(19) dieſer verhinderte/*VVFIN Umlauff des Blutes
‘this prevented circulation of the blood’

False negative RKs can result, e.g., from verb particles that are annotated as adverbs/prepositions
as well as adjectives or nouns that are in fact verbs as in example (20), whereas false positive RKs
get triggered by supposed verbs and verb particles that are really nouns or adjectives.

(20) daß euch jemand lehre/*NN
‘that someone teaches you’
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The confusion of LK and RK can be caused by confusions between verb tags, e.g., finite verbs and
infinitives. Also, since the parsers (and several other methods) take into account the whole sentence,
a missing left sentence bracket in many cases triggers the confusion of the next right bracket with a
left bracket.

The strong influence of incorrect POS tags on the system results makes it difficult to draw reliable
conclusions from the evaluation on this data set. Of course, it is a realistic scenario that annotations
are imperfect because many (historical) corpora are not manually annotated, and even gold-standard
annotations may contain errors (cf., e.g., Manning (2011) for POS tagging). However, evaluating
on such incorrect data makes it difficult to judge whether an error is actually caused by the evaluated
system or by errors in the data. For a conclusive impression of system performance with respect to
a specific task, clean and correct gold data is indispensable. As a consequence of the pilot study, I
decided to exchange the DTAPilot data set for a smaller but manually corrected sample that is used
in all subsequent experiments (Table 5.2; see also Chapter 3.2).

Discussion

Despite the problems with POS errors in one of the historical data sets, the pilot study gives a
good impression of the suitability of different methods for the automatic recognition of sentence
brackets. The results show that several of the tested methods can reliably identify sentence brackets
in German text, including taggers (Brill), classifiers (Bayes, Logit), and parsers (Berkeley, Benepar).
The Regexp parser as one of the systems that do not require training data also achieves surprisingly
good results, despite its simplicity.

Since the end goal of this chapter is a complete topological field analysis, it seems most promising
to use one of the probabilistic parsers. The neural and conventional Berkeley parsers achieve the
best results with almost perfect F1-scores for modern data and also reach high accuracy values for
historical German. The conventional Berkeley parser appears to be slightly better at adapting to
non-standard and historical language and is much faster to train, which qualifies it as the preferred
method for my follow-up studies. Future work has to show whether the results obtained in this
thesis could be improved by using Benepar (or another neural parser), e.g., in combination with pre-
trained word embeddings and normalized/modernized historical word forms or historical training
data in general.

5.4.2. Evaluation and Results
To resolve the methodological problems, the annotation experiment from the pilot study is repeated
with the Berkeley parser and the data sets from Section 5.3. Again, two models are tested: the
Punctmodel from the pilot study, trained on the TüBa-D/Z training set with punctuation, and the
parser model News1, trained on TüBa-D/Z constituency trees, i.e., it includes a constituency and
topological field analysis (cf. Chapter 6.2).

Instead of the token-wise evaluation from the pilot study, a span-based evaluation is conducted.
Each bracket span that was identified by the parser is compared to each target span from the gold
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Punct News1
Corpus Prec Rec F1 Prec Rec F1

TüBa-D/Z 99.06 99.36 99.21 99.58 99.39 99.48
Spoken 97.60 99.29 98.44 98.59 99.40 98.99
Modern 98.56 99.39 98.97 98.81 98.81 98.81
HIPKON 96.88 94.82 95.84 90.91 83.39 86.98
DTA 92.25 92.46 92.36 92.35 91.18 91.77

Table 5.7.: Overall precision, recall, and F1-scores (in percent) for sentence bracket recognition
according to FairEval for the different models on each data set. The highest scores for each
corpus are highlighted in bold. Traditional evaluation results can be found in Table A.6 in the
appendix.

data sets, as described in Chapter 4. Only target sentences that contain at least one sentence bracket
are evaluated. Table 5.7 shows fair precision, recall, and F1-scores.

Compared to the token-based evaluation in the pilot study, the span-based evaluation leads to
slightly lower overall scores, which means that errors are especially caused by multi-token brackets.
For modern German, fair F1-scores lie above 98.9%. For the historical corpora, there is again a
difference of about 3.5 percentage points between HIPKON and the clean DTA sample, but both
data sets are analyzed with fair F1-scores above 92%. F1-scores decrease with the age of the
text, ranging from 77%–100% for the DTA and 67%–100% for HIPKON. While the constituency
model News1 reaches higher scores for the TüBa-D/Z and Spoken test data, the pure topological
field model with punctuation performs better on the other data sets, especially on older historical
data.

For the modern newspaper data and HIPKON, precision values are higher than recall, reflect-
ing low proportions of false positives (cf. Figure 5.5). For the other data sets, the opposite is
observed, i.e., recall values are higher than precision due to more false positives. Except for the
spoken data, about half of the errors are boundary errors. In most of these cases, the system an-
notates a shorter bracket. A manual inspection of the annotations shows that this concerns, e.g.,
subordinating conjunctions consisting of more than one word like so dass (‘so that’) or relative and
interrogative phrases in the non-verbal left bracket of which the parser sometimes only recognizes
the first word(s). Another common cause of boundary errors are coordinated verbs in the right
sentence bracket.

Table 5.8 shows that the left bracket is recognized more reliably than the right bracket in historical
data. The opposite is true for the modern spoken and non-newspaper data, where left brackets are
prone to be false positives (cf. Figure 5.6). Confusions between the two bracket types are rare for
written modern German. In the DTA, confusions are, for example, caused by an unusual order of
elements in the right sentence bracket, as in example (21), where the initial finite verb is incorrectly
recognized as a left bracket.
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Figure 5.5.: Proportion of the different error types for sentence bracket identification: false posi-
tives (FP), labeling errors (LE), shorter, longer, and overlapping boundary errors (BEs, BEl,
BEo), labeling-boundary errors (LBE), and false negatives (FN). Numbers are shown for the
best model on each data set.

(21) welche [...] dahero leichtlich koͤnnen verſtopffet werden
‘which therefore can easily become clogged’

In older texts, especially in the HIPKON corpus, confusions between the bracket types are mostly
triggered by false negative left brackets, which in turn lead to RKs labeled as LKs. Often, the
missing LKs are relative adverbs or particles like in example (22), which no longer exist in modern
German but are frequently used in older historical writings.
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Corpus LK RK

TüBa-D/Z 99.69 99.17
Spoken 98.82 99.38
Modern 98.72 99.39
HIPKON 97.72 93.97
DTA 94.25 90.63

Table 5.8.: Overall F1-scores for each label (in percent) according to FairEval for the best perform-
ing model on each data set.

Figure 5.6.: Confusion matrix for the identification of sentence brackets. Only errors are displayed,
so the diagonal displays boundary errors.

(22) nach mittē tage do er hat geſclâfen
‘after the middle of the day where he had slept’

These relativizers were tagged as such with the original custom tagset of the HIPKON corpus, but
the information about their relative function was lost during mapping to the STTS (Schiller et al.
1999). As the STTS is intended for the annotation of modern German, it does not provide a special
category for these cases, making them undetectable for the parser. In the pilot study, I experimented
with explicitly marking relativizers as such, which improved the Berkeley parser’s F1-score on the
HIPKON data by 0.35 percentage points.

58



Chapter 5: Topological Field Analysis

Punct News1
Corpus Prec Rec F1 Prec Rec F1

TüBa-D/Z 95.25 96.67 95.96 97.31 97.44 97.37
Spoken 88.72 93.58 91.08 91.30 94.14 92.70
Modern 96.10 94.38 95.23 96.78 93.63 95.18
HIPKON 93.99 92.69 93.34 86.42 83.36 84.86
DTA 85.22 85.61 85.42 85.61 82.80 84.18

Table 5.9.: Overall precision, recall, and F1-scores (in percent) for topological field parsing accord-
ing to FairEval for the different models on each data set. The highest scores for each corpus are
highlighted in bold. Traditional evaluation results can be found in Table A.7 in the appendix.

5.5. Topological Field Parsing
The previous section has demonstrated that sentence brackets can be reliably identified in modern
and historical data without any historical training data available. The results are in accordance with
the reported literature (Section 5.2), which always finds the highest scores for the bracket elements.
The focus of this section lies on the identification of the other, more complex topological fields.
Again, the Berkeley parser with the Punct and News1models is used and applied to the data sets
from Table 5.3.

For evaluation, the parser output is compared to the target annotation. As explained in Chap-
ter 4, only the token span covered by a field is considered, independently of possible intermediate
embedded fields. Punctuation is ignored during evaluation, and only sentences for which there is
a gold analysis are included. Table 5.9 shows fair precision, recall, and F1-scores for each data set.

As expected, the parser achieves the best results on the TüBa-D/Z test data, i.e., the type of data
it was trained on, with an F1-score of 97.4% with the constituency model and about 96% with the
pure topological field model. This is comparable to the results of Cheung and Penn (2009), who
report a (traditional) F1-score of 95.2% for a (much smaller) part of the same corpus. For the
two other modern data sets, the parser reaches an overall F1-score of 95.2% (written) and 92.7%
(spoken). For the historical data, accuracies differ between data sets. While the results for the
HIPKON corpus are comparable to the modern spoken data, the overall F1-score for the DTA is
much lower with about 85.4%.

Like in previous studies, the sentence brackets are annotated with the highest accuracy in all data
sets, followed by the pre- and middle fields, while the results for post-fields are worse for all data
sets (cf. Table 5.10). Left dislocations are recognized even more rarely by the parser. The results
for the coordination field vary between data sets, as well as the proportion of sentences the parser
can analyze without errors (31%–79%, Ortmann 2020). In general, correctly analyzed sentences
are on average shorter and contain fewer fields. For some fields, it makes a difference if they are
embedded in other fields or contain embedded fields themselves. For example, post-fields and left
dislocations are recognized less often and less accurately if they do not contain other fields. This
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Corpus KOORD LV VF LK MF RK NF

TüBa-D/Z 94.05 75.09 97.75 99.73 96.66 99.15 87.45
Spoken 64.71 25.96 91.71 98.98 92.96 99.42 64.80
Modern 72.54 13.33 96.65 98.84 96.70 99.39 81.84
HIPKON 96.88 0.00 94.89 97.97 96.25 93.62 85.21
DTA 71.98 39.53 88.45 94.79 82.14 90.67 63.89

Table 5.10.: Overall F1-scores for each label (in percent) according to FairEval for the best per-
forming model on each data set.

can be explained by the characteristics of the training data: Post-fields and left dislocations are rare
in newspaper text and mostly contain ‘heavy’, complex elements, i.e., longer clauses.

The confusion matrices (Figure 5.7) reveal that errors for all data sets mainly occur on the di-
agonal (boundary errors) and in the right-most column and/or bottom row (false negatives and
positives). False positives are most frequent in the modern spoken data, while the modern non-
newspaper data exhibits more false negatives (cf. Figure 5.8). Labeling-boundary errors are most
prevalent in the historical corpora.

Besides those general observations, every corpus poses different challenges to the parser. To
better understand the differences between data sets and the causes of errors, in the following, the
results for the different corpora are analyzed in more detail.

TüBa-D/Z Except for post-fields and left dislocations, all fields in the Tüba-D/Z test data are
recognized with F1-scores between 94% and 99.7%. The sentence brackets are identified with
the highest accuracy, followed by pre- and middle fields and coordinations. For all fields (except
KOORD and LV), more than 24% of the errors are boundary errors. This value is highest for the
middle field, where 63% of the fields only have incorrect boundaries. That can, for example, be
the case if the right sentence bracket is empty and the parser regards the middle and post-field as a
single field.

In Ortmann (2020), I found that four out of five sentences from this data set are analyzed without
any error. On average, those sentences are ten words shorter than sentences containing errors. A
qualitative error analysis reveals that errors mostly occur with elliptical constructions, fragments,
parenthetical phrases, and sentence structures that are uncommon in standard German and, there-
fore, rare in the training data. This observation is in accordance with Cheung and Penn (2009),
who also identify parentheticals as the main error cause in their study. Additional error sources
are quotes and reported (direct) speech, as well as left dislocations and post-fields without internal
structure.
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Figure 5.7.: Confusion matrix for the identification of topological fields. Only errors are displayed,
so the diagonal displays boundary errors.
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Figure 5.8.: Proportion of the different error types for topological field analysis: false positives
(FP), labeling errors (LE), shorter, longer, and overlapping boundary errors (BEs, BEl, BEo),
labeling-boundary errors (LBE), and false negatives (FN). Numbers are shown for the best
model on each data set.
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Spoken While the sentence brackets and pre- and middle fields are recognized with F1-scores
>91%, only about two thirds of the coordinations and post-fields are identified correctly in the
spoken data. Left dislocations are recognized with an F1-score of only 26%. Again, many system
spans overlap with the gold standard annotation, especially in the case of middle fields (58%), which
often erroneously stretch across post-fields.

In Ortmann (2020), I found that almost two thirds of all sentences in the spoken data set are
analyzed without errors. On average, these sentences contain nine fewer words than incorrect sen-
tences. Errors mostly result from the divergence between spoken and written language structures,
for instance, incomplete utterances, repeated words, or unrelated clauses and fragments in a single
sentence. Still, it can be stated that, despite the differences between written training and spoken
test data, the majority of the fields are recognized with fairly high accuracy and, if similar data
should be processed automatically, using part of the spoken data as additional training resource
could further improve the results for this text type.

Modern For the modern written data set, the evaluation shows that texts from different registers
can be analyzed with comparable accuracy as newspaper data. The parser performs best on the
Wikipedia articles (F1: 96.7%), while F1-scores range between 94% and 96% for the other registers.
Although the data shows a slightly different distribution of fields with more left dislocations, post-
fields, and coordinations, the parser still recognizes most fields with high F1-scores. Except for
KOORD and LV fields, between 20% and 67% of the errors are boundary errors.

In Ortmann (2020), I found that 58% of the sentences are analyzed completely correctly. For
many sentences, missing coordination fields are the only error. Since coordinating conjunctions are
not always annotated in the training data, the parser often does not recognize them in the test data,
leading to low recall for the KOORD field (96% FNs). In my study (Ortmann 2020), I showed that
the recall of the KOORD field could be increased from 56% to 97% with simple rules while keeping
the precision at 100%, thus improving the F1-score of this field to 98%. Other common causes
of errors are direct and reported speech, especially in sermons and fiction texts, and the higher
proportion of left dislocations and post-fields in informal, spoken-like language.

HIPKON The overall scores for the first historical corpus are comparable to those of modern
spoken data (although with quite different error distributions, cf. Figure 5.8). For most fields, the
F1-score is >93%. Despite the higher proportion of post-fields resulting from the corpus design,
post-fields are analyzed with a higher F1-score in this historical text sample than in most of the
other corpora. For left dislocations, the opposite is true: Although they are more frequent in the
data set, no LV field is recognized in the HIPKON sample. Either the corresponding tokens are
not analyzed at all, or they are analyzed as part of the pre-field, which is also reflected in the high
percentage of pre-fields with incorrect boundaries (62%). In general, boundary errors account for
37%–62% of the incorrect fields (without LV and KOORD).

In Ortmann (2020), I found that about two thirds of the sentences from this data set are analyzed
without errors by the parser. There is no clear tendency concerning to the age of the text, but recall
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values tend to be slightly lower than precision. Common error causes for this data set include empty
middle fields like in example (23), which are relatively frequent in the HIPKON corpus due to its
specific focus on the post-field.

(23) vn̄ [LK woͤlte] [RK gan] zuͦ ſínem vatt’ vnd ſprechē.
‘And wanted to go to his father and speak.’

Adding historical training data or implementing simple rules, in these cases, could prevent the wrong
identification of a middle field if, for example, it is preceded by a right bracket or starting with verbal
elements. Additional rules could also improve the identification of post-fields, which are often not
recognized by the parser (29% FNs). By simply labeling unanalyzed tokens following a post-field
or right bracket as post-field, in my study (Ortmann 2020), I was able to increase the recall for this
field by six percentage points to over 90%.

Another common cause for errors in this historical data set are left brackets like relative adverbs
and particles that no longer exist in modern German (cf. Section 5.4.2 on sentence bracket identi-
fication). The information about their relative function was lost during conversion to the modern
STTS tagset, preventing the parser from identifying them. Since one missing bracket can change
the complete analysis of a sentence, the explicit marking of these tokens as left brackets results in
improvements of all fields from pre- to post-field. For a reliable analysis of older historical data,
available information about the relative function of tokens should somehow be transferred to the
modern tagset, e.g., by adding a special tag and corresponding training data or by (mis-)using an
existing tag for relativizers.

Overall, the evaluation of the HIPKON data shows that, by using the POS tags as input, it is
generally possible to transfer a model from modern to historical data, even though some special
adjustments and/or historical training data would be beneficial to improve the reliability of the
automatic analysis.

DTA The results for the second historical corpus are substantially worse than for the other data
sets. Only the sentence brackets are identified with F1-scores >90%, while the other fields range
only between 39% and 88%. Like for the other corpora, the results are worst for left dislocations:
Only a quarter of them is recognized correctly, while the rest is mostly skipped by the parser,
especially if they do not contain embedded fields. Coordination fields are also often not recognized,
but adding the same simple rules as for the modern written data could increase the recall for the
KOORD field from 56.8% to 90.1% in Ortmann (2020), improving the F1-score of this field by 20
percentage points.

Again, between 22% and 65% of the errors result from incorrect boundaries, especially in the
case of middle fields, right sentence brackets, and post-fields. But only 30% of all sentences in the
study (Ortmann 2020) were analyzed without errors. On average, those sentences are 26.5 words
shorter and contain 6 fewer fields than sentences with one or more errors. That already indicates
that the sentences in the DTA are very long and complex. The average sentence length in the
sample is 39 words, compared to 19 words in the modern newspaper texts (spoken: 10, written: 14,
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HIPKON: 12), with a maximum embedding depth of 10 fields, i.e., one field containing nine other
nested topological fields, compared to a maximum depth of 6 fields in the newspaper data (spoken: 5,
written: 4, HIPKON: 3). Long and complex left dislocations and deeply embedded post-fields are
very common in the data set, as well as embedded structures within the middle field, which are
infrequent in modern German. Furthermore, the data contains many parenthetical constructions
that are hard to process and understand, even for human annotators. An example sentence from
the data set can be found in Figure 5.9.

The often extreme sentence length and complexity and the deep embedding of fields is a typical
characteristic of the Early New High German data and not covered by the modern training data,
which explains the high number of errors. While the parser is mostly able to recognize local, clause-
internal structures, e.g., left and right brackets surrounding a middle field, it often fails to identify
larger structures, especially in complex constructions, e.g., with several embedded post-fields. The
different historical use of punctuation further exacerbates the problems, for example, with reported
speech and parenthetical constructions. The same can be said about the fact that writers during this
time period commonly left out right sentence brackets, which makes embedded clauses even harder
to recognize and analyze correctly, for example in (24). Also, similar to the HIPKON corpus, the
DTA sample contains adverbial left brackets that the parser cannot recognize, leading not only to
missing left brackets but also incorrect surrounding fields.

(24) Ob dieſes wol eine loͤbliche Sache / wodurch vielmal ſolche Seuche abzuhalten [...]: So
bezeuget doch die taͤgliche Erfahrung / daß [...]
‘Although this (is) a laudable thing, whereby often such an epidemic can be prevented [...],
daily experience shows that [...]’

Since these error sources become less frequent over time, there is a clear relationship between the
age of the text and how well the parser performs: F1-scores decrease with increasing age of the text
(cf. Figure 5.10). This observation holds for all genres in the sample except the youngest gardening
text and the funeral sermons, which are only available for the earliest time periods. The highest
F1-scores are reached for the most recent newspaper and chemistry texts and the lowest for the
oldest texts from the genres of law and language science.

It has to be kept in mind, though, that the texts in this sample are already corrected for sentence
boundaries and POS tags. Using the original annotations, the results would be worse, especially
for older texts where POS error rates are high. In my study (Ortmann 2020), I supplied the parser
with the original POS tags (and gold sentence boundaries for evaluation purposes). As a result,
the overall F1-score decreased by almost 10 percentage points to 75.6%. For many older texts,
there was an even larger reduction in F1-score of 20 or more percentage points. Using the original
sentence segmentation can be expected to further reduce the accuracy. While missing sentence
boundaries do not necessarily cause problems, the low precision values (avg: 83%) would lead to
many incomplete fields crossing sentence boundaries. This highlights the importance of reliable
basic annotations like sentence boundaries and POS tags.

65



Chapter 5: Topological Field Analysis

‘So it is the question whether it would not be adequate at this time that - in absence of that meeting -
Christian preachers themselves faithfully reflect on these important things and about what would be
beneficial to the Church of God by writing to each other as well as through public printing, so that
these thoughts become known to those who are concerned.’

Figure 5.9.: Topological field analysis of a sentence from the theological text Pia Desideria from
the DTA data set (Philipp Jacob Spener, 1676; BBAW 2021)
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Figure 5.10.: FairEval F1-scores for the different genres from the DTA sample over time.

Overall, the evaluation of this data set shows that texts from the Early New High German period
that were written by skilled writers or scientists, like it is the case for the DTA sample, can only
unsatisfactorily be analyzed with models purely trained on modern German. While additional rules
could certainly improve the automatic field identification to a certain extent, it is unlikely that a
parser will be able to reliably analyze such complex sentences without sufficient similar training
data.

5.6. Discussion
In this chapter, I have explored the automatic identification of topological fields in modern and
historical German without any historical training data. Based on my pilot study, I selected the
Berkeley parser as the preferred tool and trained models on modified topological field trees with
POS tags as input tokens. The evaluation has shown that these probabilistic, POS-based models
achieve very good results for the annotation of sentence brackets in modern and historical language,
with overall F1-scores between 92% and 99.5%.

Identifying the other topological fields is more difficult, with overall F1-scores of 92%–97% for
modern German and 85%–93% for the historical data sets. For the HIPKON corpus, which covers
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sermons from the 12th to 18th century, the accuracy is comparable to modern spoken German,
whereas the high complexity of Early New High German sentences in the DTA poses more problems
to the parser.

Independently of the data set, the different fields are analyzed with different levels of accuracy.
While sentence brackets, pre-fields, and middle fields are recognized quite reliably with F1-scores
mostly >90%, the scores for post-fields and left dislocations are significantly lower. These results
are in accordance with the literature (cf. Section 5.2) but especially problematic in the context of
this thesis, since post-fields are highly relevant to the identification of extraposition.

However, the specific effects of an imperfect topological field analysis on the end result cannot be
deduced from the resulting scores alone because errors from the two annotation steps (Chapters 5
and 6) can reinforce or mitigate each other. Also, post-fields with incorrect boundaries (14%–44%
in the different data sets) do not necessarily prevent the recognition of extraposed elements if the
spans still overlap. And different types of extraposed elements are also affected to different degrees
(see Chapter 7) because not all post-fields are affected by errors in the same way, either (e.g.,
regarding complexity and embedded fields). So, despite the uncovered weaknesses, the developed
methods are a practical basis for the subsequent annotation experiments in this thesis.
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Identification of Extraposition
Candidates

The second prerequisite for the automatic analysis of extraposition is to identify constituents that
could be extraposed. I will refer to these elements as candidates for extraposition. In this chapter, I
do not (yet) distinguish where in the sentence the candidates are located (pre-field, middle field, or
post-field). Instead, the studies focus on recognizing all potential candidates that could be moved
to the post-field. According to Zifonun et al. (1997), the following constituents can be placed in the
post-field (ordered by likelihood of extraposition; p. 1651):

(25) sentences > adjunct phrases > prepositional phrases > nominal phrases
> adjective/adverb phrases

Sentences include content clauses, complement clauses, and relative clauses. For some of these
clause types, the post-field is the default position, e.g., argument clauses as in example (26a). For
these clauses, the pre-field is the only unmarked alternative to a post-field placement, cf. exam-
ple (26b). An actual variation of positions between middle field and post-field is only observed
for attributive clauses like relative clauses, which can be placed adjacent to their antecedent in the
pre-, middle, or post-field or be separated from it through extraposition. Antecedents are treated
in Chapter 7.1, which deals with determining the base position.

(26) a. Ihr ist bewusst gewesen, [NF dass das nicht einfach wird].
b. [VF Dass das nicht einfach wird], ist ihr bewusst gewesen.

‘She was aware that this will not be easy.’

Besides clauses, several phrase types can be placed in the post-field. Adjunct phrases are phrases
starting with als or wie (‘as/like’). According to Zifonun et al. (1997), the post-field is considered
their de-facto default position if they are used as comparative elements. Although they could be
placed in the middle field, as demonstrated in example (27) from the Modern data set, this rarely
happens neither in modern nor in historical data (but see Sahel (2015) for opposing observations
in the 17th century). In our manually annotated data set of Early New High German, over 92% of
the comparative elements are unambiguously extraposed. The remaining ones are placed adjacent
to their antecedent at the edge of middle field and post-field with an empty right bracket, or they
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are moved to the post-field together with their antecedent. The Modern data set contains no in situ
comparative phrases at all.

(27) a. In einer Studie fanden wir heraus, dass [MF Achtsamkeitstraining Menschen doppelt so
gut] hilft [NF das Rauchen aufzugeben wie die beste Standardtherapie].

b. In einer Studie fanden wir heraus, dass [MF Achtsamkeitstraining Menschen doppelt so
gut wie die beste Standardtherapie] hilft [NF das Rauchen aufzugeben].
‘In one study, we found that mindfulness training helps people quit smoking twice as well
as the best standard therapy.’

The remaining phrase types are extraposed more rarely. As already mentioned in Chapter 2, prepo-
sitional phrases are the most frequently extraposed phrase type in modern standard German, while
other phrase types are extraposed mainly in oral language, with higher amounts of extraposition
being reported for older stages of German.

In this thesis, I will only consider elements for which there is relevant variation between in situ
placement and extraposition. That excludes comparative elements, which are almost exclusively
found in the post-field, as well as content clauses, which can only be placed in the pre- or post-
field. Complements of nouns and adjectives are also found either adjacent to the antecedent in
the pre-field or extraposed if the antecedent is located in the middle field (Zifonun et al. 1997).
Therefore, they are not considered here. What remains are the following constituents: noun phrases
(NP), prepositional phrases (PP), adjective phrases (AP), adverb phrases (ADVP), and (attributive)
relative clauses (RelC).

Similar to the previous chapter, where I started with the simpler task of sentence bracket recogni-
tion before proceeding to the complete topological field analysis, I also split the task of identifying
candidates for extraposition into three incremental steps. Section 6.1 starts with an experiment
on chunking modern and historical German. In Section 6.2, I report a study on the automatic
recognition of phrases, followed by the identification of relative clauses in Section 6.3. The chapter
concludes with a discussion in Section 6.4.

6.1. Chunking (of German)57

Chunking is also referred to as partial or shallow parsing. The concept of chunks was introduced by
Abney (1991), who defines them as non-recursive phrases from a sentence’s parse tree ending with
the head of the phrase. According to this definition, a chunk may contain chunks of other types
but not of the same type, and post-nominal modifiers start a new chunk. Example (28) shows the
annotation of an English sentence following Abney’s chunk definition.

57The content of Section 6.1 is taken from my paper Ortmann (2021a): Chunking Historical German and was updated
with FairEval results.
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(28) [S [NP The woman] [PP in [NP the lab coat]] [VP thought]] [S [NP you] [VP had bought] [NP an
[ADJP expensive] book]].
(Kübler et al. 2010, p. 147)

The CoNLL-2000 shared task on chunking (Sang and Buchholz 2000), which is still widely used
as a benchmark, has popularized a more restricted definition of chunks. It only allows for non-
recursive, non-overlapping chunks, i.e., a word belongs to a maximum of one chunk, while keeping
the restriction that a chunk ends at the head token. When applied to sentence (28), this results in
the annotation in example (29).

(29) [NP The woman] [PP in] [NP the lab coat] [VP thought] [NP you] [VP had bought]
[NP an expensive book].

Defining chunks this way makes them suitable for the automatic annotation with sequence labeling
methods and is especially useful for tasks that do not require a complete syntactic analysis but profit
from an easy and fast annotation, e.g., agreement checking in word processors (Fliedner 2002;
Mahlow and Piotrowski 2010). Furthermore, it may serve as a basis for deeper syntactic analyses
(cf. Van Asch and Daelemans 2009; Daum et al. 2003; Osenova and Simov 2003) and thus could
build the foundation for the automatic syntactic annotation of historical data.

However, applying the standard definition of chunks is problematic when chunking German
because of possibly complex pre-nominal modification. The phrase in example (30) violates Ab-
ney’s chunk definition due to the embedded noun chunk and, when annotated according to the
CoNLL-style definition, it would contain an article der that is separated from its noun chunk as in
example (31).

(30) [NC der [NC seinen Sohn] liebende Vater]
the his son loving father

‘the father who loves his son’
(Kübler et al. 2010, p. 148)

(31) der [NC seinen Sohn] [NC liebende Vater]

While in some German corpora, these stranded tokens are left unannotated, e.g., DeReKo (Dipper
et al. 2002), Kübler et al. (2010) introduce a special category for stranded material, marked with an
initial ‘s’, e.g., sNC for a stranded noun chunk. They also suggest including the head noun chunk
in the prepositional chunk, while leaving post-nominal modifiers separate. In the following, their
approach is adopted for chunking German.58

Of the eleven original chunk types from the CoNLL-2000 shared task, four main types are con-
sidered in this chapter: noun chunks (NC), prepositional chunks (PC), adjective chunks (AC), and
adverb chunks (ADVC), and, in addition, stranded noun (sNC) and prepositional chunks (sPC).
58Similar to the decision for a topological field scheme in Chapter 5, my selection of the chunking scheme has a very

practical reason because the available training data from the TüBa-D/Z corpus is annotated according to the definition
by Kübler et al. (2010).
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Example (32) shows the annotation of a sentence from an 1871 newspaper taken from the DTA
data set. For better readability, the relation of stranded articles to their respective noun chunks is
indicated by subscripts.

(32) [sNC1 die] [sNC2 den] [PC an Deutschland] [NC2 abgetretenen Landestheilen]
the the to Germany transferred territories

[NC1 angehörenden Kriegsgefangenen] [...] werden [ADVC sofort] [PC in Freiheit]
belonging prisoners of war will be immediately to freedom

gesetzt;
set

‘Prisoners of war belonging to the territories transferred to Germany will be released imme-
diately.’
Allgemeine Zeitung, no. 72, 1871 (DTA; BBAW 2021)

6.1.1. Related Work
Since chunking can be understood as both a shallow parsing and a sequence labeling task, de-
pending on the chunk definition, there have been several different approaches to the automatic
identification of chunks. For non-recursive Abney-style chunking, Abney (1991) uses finite-state
cascades, yet similar techniques have also been applied to CoNLL-style chunking. Müller (2005)
gives an overview of chunking studies on German, many of which use finite state-based methods,
but also other parsing approaches. For his FSA-based chunker, he reports an overall F1-score of
96%.

For non-recursive, non-overlapping CoNLL-style chunking, there have been experiments with
different classification and sequence labeling methods, including the application of taggers (e.g.,
Osborne 2000; Molina and Pla 2002; Shen and Sarkar 2005) with F1-scores between 92% and
94%, as well as machine learning, e.g., with Conditional Random Fields yielding F1-scores of
93% to 94% (cf. Sun et al. 2008; Roth and Clematide 2014). More recently, there have also been
experiments with neural sequence labeling using bi-directional LSTMs (Akhundov et al. 2018; Zhai
et al. 2017), RNNs (Peters et al. 2017), and neural CRFs (Huang et al. 2015; Yang and Zhang 2018)
with F1-scores of about 95%.

As chunks of a given type can only contain certain part-of-speech sequences, most of the studies
use POS tags as features. However, lexicalization of models can also improve chunking results (cf.
Shen and Sarkar 2005; Indig 2017) and current contextual word representations already seem to
have some awareness of shallow syntactic structures like chunks (Swayamdipta et al. 2019). In
general, Bosch and Buchholz (2002) find that POS tags are most relevant if the training data is
small, while words become more helpful with increasing amounts of data, and a combination of
both features yields the best results.

For evaluation, most studies still use the data set from the CoNLL-2000 shared task (Sang and
Buchholz 2000), i.e., WSJ data from the Penn Treebank, and written news data also serves as the

72



Chapter 6: Identification of Extraposition Candidates

evaluation basis for most studies on German. However, when Pinto et al. (2016) compare tools
on English CoNLL-2000 data with their performance on Twitter data, they find that for standard
toolkits, F1-scores decrease by 17 to 38 percentage points to 45%–54% on social media text. A sim-
ilar drop in performance might also occur for other non-standard data like historical language and
would underline the importance of methods and models that are specifically tailored to a particular
language variety.

But to date, there has only been a small number of studies on the automatic syntactic analysis
of historical German, all of which have to deal with a lack of syntactically annotated historical
data (cf. the discussion in Chapter 2.3). In the absence of training data, some studies develop rule-
based approaches, e.g., Chiarcos et al. (2018) for topological field identification in Middle High
German (cf. Chapter 5). But without the possibility for evaluation, the accuracy of such systems
remains unclear. Other studies try to compensate for the lack of historical data by falling back on
modern German. Petran (2012) approximates historical language by removing punctuation and
capitalization from a modern German news corpus. Using CRFs, he tries to identify segments of
increasing length (chunks, clauses, and sentences) in this artificial data set and concludes that smaller
units are easier to identify. For chunking, he reports an F1-score of 93.3%. Since capitalization
and punctuation are not the only differences between modern and historical German, it is unclear
how well these results generalize to real historical data. Nevertheless, the exploitation of modern
data can be conducive for automatically annotating historical language by reducing the need for
large annotated historical data sets. As the previous chapter has shown, models trained on modern
newspaper text can successfully be transferred to historical German with F1-scores ≥90% when
POS tags are used as input – unless the historical language structures differ too much from modern
German (Ortmann 2020). In this section, rule-based and statistical approaches will be tested for
chunking historical (and modern) German.

6.1.2. Data
Most German data sets and especially historical corpora do not offer a manual chunk annotation
that could be used for training and evaluating automatic models. However, Kübler et al. (2010)
notice that chunks can be extracted directly from constituency trees by converting the lowest phrasal
projections with lexical content to chunks. Using this method, they automatically transform the
constituency annotations from the TüBa-D/Z treebank (Telljohann et al. 2017) into chunks. The
resulting corpus contains over 743k instances of the six chunk types considered in this thesis.

Since the extracted chunks might be influenced by the structure of the constituency trees and,
hence, may differ between treebanks with different syntactic annotation schemes, I included the
Tiger corpus (Brants et al. 2004) as a second German treebank in my chunking study. The Tiger-
style annotation of certain syntactic phenomena deviates significantly from those in the TüBa-D/Z
corpus (Dipper and Kübler 2017). Most notably, the Tiger treebank includes discontinuous annota-
tions. Therefore, all sentences must be linearized first before chunks of the six different types can
be extracted from the constituency trees similar to the procedure described by Kübler et al. (2010).
Here, a combination of the raising and splitting approaches described by Hsu (2010) is applied to
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Model #Docs #Sents #Toks #Chunks
Training
News1 3,075 83,225 1,564,840 593,735
News2 1,863 39,976 726,811 255,077
Hist 28 23,470 566,288 217,269
Mix 1,891 63,446 1,293,099 472,346

Development
News1 377 10,702 196,308 74,780
News2 200 4,567 81,593 28,615
Hist 28 2,932 72,123 27,815
Mix 228 7,499 153,716 56,430

Table 6.1.: Overview of the training and development data for each of the models. Only sentences
containing at least one chunk of the relevant types are included. News1 corresponds to the
TüBa-D/Z and News2 to the Tiger corpus. Hist includes the historical treebanks Mercurius
and ReF.UP. The Mix set is a combination of the News2 and Hist sets.

the trees until no crossing branches remain (cf. Ortmann 2021b).59

Besides accounting for possible influences of the annotation scheme on the extracted chunks,
including the Tiger treebank offers another advantage: While annotated historical data sets rarely
exist for syntactic annotation tasks, there are two treebanks for historical German, Mercurius and
ReF.UP, which are annotated according to the Tiger scheme and thus can also be used for chunk
extraction. Like with the Tiger corpus, the constituency trees from both historical treebanks must
be linearized before chunks can be extracted from them. In total, the two corpora contain about
67k and over 205k chunks of the six relevant types, respectively. Table 6.1 gives an overview of
the four training and development sets.

Compared to previous studies on historical data, the two modern and historical treebanks form a
solid basis for training and evaluating automatic chunking methods on historical German. However,
Osborne (2002) notes that distributional differences between training and test data can be even more
problematic for chunking performance than noise in the data itself. Therefore, three additional data
sets that are unrelated to the training data are used for evaluation. The Modern data set contains
about 2.8k chunks of the six types and is used to test the applicability of annotation methods to non-
newspaper registers. The two other data sets comprise historical data from two different corpora.
The HIPKON corpus, originally, includes only a partial annotation of chunks, which was completed
for my chunking study, yielding a total amount of 1.5k chunks. The second historical data set, DTA,
contains about 6.6k chunks. Table 6.2 gives an overview of the test data.

In Figure 6.1, the distribution of the six chunk types in the test data is shown. As could be
59Basically, discontinuous nodes are split and re-inserted into the tree based on the linear order of tokens in the sentence.

The same holds for punctuation, which is appended to the same parent node as the next token to the left (or to the
right for sentence-initial punctuation).
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Corpus #Docs #Sents #Toks #Words #Chunks
TüBa-D/Z 364 10,491 196,636 167,847 74,981
Tiger 200 4,445 78,018 67,685 27,253
Modern 78 547 7,605 6,354 2,829
Mercurius 2 818 18,740 16,401 6,691
ReF.UP 26 2,173 61,399 48,820 21,120
HIPKON 53 342 4,210 3,747 1,529
DTA 29 609 18,515 15,822 6,651

Table 6.2.: Overview of the test data. Only sentences containing at least one of the relevant chunk
types are included in the evaluation.

Figure 6.1.: Distribution of chunk types in the test data.
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expected, noun chunks (NC) are the most frequent chunk type (51%–60%), followed by preposi-
tional chunks (PC; 20%–30%) and adverb chunks (ADVC; 8%–15%). Stranded chunks make up
about 1% of the chunks in all data sets, except for the TüBa-D/Z data with 0.6% and the modern
non-standard data with only 0.4% stranded chunks. While stranded noun chunks (sNC) are more
frequent in the modern data, the opposite can be observed for most of the historical data sets where
stranded prepositional chunks (sPC), as in example (33) from the Mercurius corpus, are more
common.

(33) [sPC von] [NC der Frantzosen] [PC Vorhaben]
of the French’s plan

‘of the plan of the French’

6.1.3. Methods
As detailed in Section 6.1.1, various methods have been applied to the automatic recognition of
chunks in modern text. In my experiment, two different approaches are tested: an unlexicalized
regular expression-based chunker, which serves as a baseline, and a neural state-of-the-art sequence
labeling tool.

The regular expression-based approach is comparable to the finite-state chunkers mentioned in
Section 6.1.1. For this study, a simple Regexp chunker as implemented in the NLTK60 is used,
which successively applies a set of manually created context-sensitive regular expressions to an
input POS sequence to identify non-recursive, non-overlapping chunks of the six different types
(for the exact rules, see Figure A.4 in the appendix).

The neural sequence labeling tool NCRF++ (Yang and Zhang 2018)61 achieves state-of-the-art
results for several tasks, including chunking. On the English CoNLL-2000 data, the best model
reaches an F1-score of 95% (Yang et al. 2018). The toolkit consists of a three-layer architecture
with a character sequence layer, a word sequence layer, and a CRF-based inference layer.

While the Regexp chunker relies on expert knowledge in the form of manually compiled rules,
NCRF++ must be trained on annotated data to perform the task. For this study, the tool is trained
on the two different modern treebanks: model News1 is trained on the TüBa-D/Z training set, and
model News2 on the Tiger training set. Also, the two historical treebanks are used to train a joint
model Hist, which might be more suitable for the analysis of historical data and its peculiarities.
Finally, since the historical data sets are smaller than the modern training sets, a model Mix is
trained on a combination of the modern and historical treebanks that follow the same annotation
scheme (Tiger, Mercurius, ReF.UP). During training, the tool is provided with the corresponding
development data, and each of the models is trained with and without POS tags as additional feature.

Since current contextual word representations seem to be aware of shallow syntactic structures
(Swayamdipta et al. 2019), each model is also trained with GloVe embeddings pre-trained on Ger-

60http://www.nltk.org/api/nltk.chunk.html
61https://github.com/jiesutd/NCRFpp
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man Wikipedia.62 To ensure comparability, all models are trained with the same default settings.63

While the News2 and Hist training sets only contain annotations of the six chunk types con-
sidered in this study, the News1 model is trained on all chunk types included in the TüBa‑D/Z
corpus, even though only the six types described at the beginning of Section 6.1 are evaluated here.
For each token, both selected methods, i.e., the Regexp chunker and the NCRF++ toolkit, output
the single most likely chunk label encoded as a BIO tag.

6.1.4. Evaluation and Results
To assess the performance of the automatic methods from the previous section, their output is
compared chunk-wise to the gold standard annotation. In my chunking study (Ortmann 2021a),
for the first time, I performed an evaluation with fine-grained error types. However, the new error
types were counted exclusively as false positives, which makes precision and recall values hard to
interpret. In this section, I report the original results, complemented by updated FairEval results
(according to Chapter 4).

Table 6.3 from Ortmann (2021a) gives an overview of the results for the different annotation
methods and models. The evaluation shows that the Regexp parser, which operates on POS tags
only, reaches F1-scores between 85% and 92% on all data sets, setting a high baseline for the task.
The best results are achieved for the modern non-newspaper data and the HIPKON corpus. The
NCRF++ models outperform this baseline by several percentage points on each data set, achieving
F1-scores between 90% and 97%. As already observed in other studies, models that include POS
tags as additional features generally perform better than models purely based on characters and
word forms. Also, adding pre-trained word embeddings improves the results in almost all cases,
especially for models without POS tags.

The modern newspaper data is analyzed with the highest F1-scores of 97% and 95%, respectively.
Unsurprisingly, models trained on the training section of the same corpus perform better on the
test data than models trained on another data set. This may be a result of distributional differences
between data sets (Osborne 2002) but could, in part, also be due to differences between the con-
stituency trees from which the chunks were extracted. The results for the modern non-newspaper
data are slightly lower than for the news corpora with a maximum F1-score of 94%. Interestingly,
the overall F1-scores are higher for the more informal registers than for the formal ones. Probably,
informal sentences are generally easier to chunk because they contain more simple (noun) chunks
and less pre-nominal modification.

While models purely based on words still perform well on the modern data, POS tags prove to
be especially relevant for the historical data. Even the Hist model must be complemented with
62GloVe embeddings trained on German Wikipedia and provided by deepset, https://deepset.ai/german-w

ord-embeddings; Download: December 15, 2020.
63The experiments of Yang et al. (2018) suggest that the default combination of character CNN, word LSTM, and a

CRF-based inference layer gives the best result for the chunking task, with good model stability for random seeds
(mean F1: 94.86 ± 0.14). However, this study (Ortmann 2021a) was only a first investigation of chunking historical
German and further experiments should be conducted to test for model stability and explore fine-tuning of parameters
for optimal results.
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Model Words POS GloVe TüBa-D/Z Tiger Modern Mercurius ReF.UP HIPKON DTA
Regexp - + - 85.46 86.75 90.35 85.70 86.83 91.76 88.20

News1

+ - - 93.46 87.80 89.63 72.52 49.77 47.69 72.07
+ - + 94.30 88.16 90.12 73.48 51.94 48.43 71.50
+ + - 97.07 90.33 92.91 90.34 91.01 93.71 90.11
+ + + 97.17 90.89 93.68 90.37 90.66 92.92 90.15

News2

+ - - 85.02 91.41 86.67 71.15 49.09 43.25 67.75
+ - + 86.19 92.76 87.77 72.05 50.01 46.90 69.59
+ + - 90.96 94.70 94.04 88.58 89.84 94.20 88.76
+ + + 91.22 95.44 93.97 88.55 88.77 92.50 88.35

Hist

+ - - n.a. n.a. n.a. 11.68 16.10 12.81 13.86
+ - + n.a. n.a. n.a. 85.53 81.28 69.41 73.61
+ + - n.a. n.a. n.a. 92.37 93.48 93.29 89.89
+ + + n.a. n.a. n.a. 92.80 93.64 93.85 90.37

Mix

+ - - n.a. n.a. n.a. 82.56 79.42 60.47 73.24
+ - + n.a. n.a. n.a. 83.40 79.02 65.05 74.77
+ + - n.a. n.a. n.a. 91.94 93.03 94.49 90.15
+ + + n.a. n.a. n.a. 92.19 93.41 93.99 90.29

Table 6.3.: Overall F1-scores for the Regexp chunker and all NCRF++ models for the seven cor-
pora (Ortmann 2021a). Models trained on historical data are only applied to historical corpora.
All numbers are given in percent and the best result for each corpus is highlighted in bold.

(modern) pre-trained word embeddings for acceptable performance on the historical corpora, possi-
bly reflecting problems with the non-standardized spelling in historical German. For the Mercurius
and ReF.UP corpora, the Hist model with POS tags and word embeddings achieves the best re-
sults with F1-scores of about 93%, followed by the Mixmodel. For the HIPKON corpus, the Mix
model with POS tags reaches the highest F1-score of 94.5%, closely followed by the News2model.
The DTA data is analyzed with the highest F1-score of 90% by the Hist model with POS tags
and word embeddings, followed by the Mix and the News1 models with F1-scores of about 90%
as well.

These results are in line with the observations from the previous chapter that models trained
on modern newspaper data can successfully be transferred to historical German with overall F1-
scores ≥90% when POS tags are used as input. However, the evaluation also shows that historical
training data further improves the automatic annotation of historical language. For completeness,
I reproduced the annotation experiment from Ortmann (2021a) with the four POS-based models
and word embeddings. Table 6.4 shows the results for fair evaluation, also including precision and
recall values.
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News1 News2 Hist Mix
Corpus Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1

TüBa-D/Z 96.85 96.77 96.81 91.45 91.02 91.24 - - - - - -
Tiger 90.38 90.99 90.68 94.99 95.04 95.01 - - - - - -
Modern 93.56 93.63 93.59 94.12 93.81 93.96 - - - - - -
Mercurius 90.61 90.14 90.38 88.56 88.52 88.54 92.83 92.78 92.81 92.24 92.13 92.18
ReF.UP 90.44 89.05 89.74 87.94 87.80 87.87 93.12 92.24 92.67 92.95 91.95 92.45
HIPKON 92.80 92.74 92.77 92.45 92.39 92.42 93.94 93.75 93.84 93.93 93.74 93.84
DTA 90.16 88.65 89.40 87.38 86.70 87.04 90.50 88.72 89.60 90.63 88.57 89.59

Table 6.4.: Overall precision, recall, and F1-scores (in percent) according to FairEval for chunking
with the different POS-based models with pre-trained word embeddings. Models trained on
historical data are only applied to the historical test sets, and the highest scores for each corpus
are highlighted in bold. Traditional evaluation results can be found in Table A.8 in the appendix.

Corpus NC PC AC ADVC sNC sPC

TüBa-D/Z 97.00 97.36 89.81 98.52 76.37 71.24
Tiger 96.04 94.92 89.60 92.80 87.50 73.22
Modern 95.57 93.37 85.71 91.31 80.00 0.00
Mercurius 93.43 92.97 89.32 94.48 0.00 38.60
ReF.UP 94.40 92.96 83.32 90.90 5.41 40.82
HIPKON 96.34 91.47 83.58 92.34 0.00 26.67
DTA 90.96 90.42 82.89 88.58 10.26 16.67

Table 6.5.: Overall F1-scores for each label (in percent) according to FairEval for the best perform-
ing model on each data set.

It is important to note that, once again, the experiments in this chapter were conducted with gold
standard POS tags. Using automatically assigned POS tags can be expected to negatively influence
the results. For example, Müller (2005) reports a chunking F1-score of only 90% instead of 96%
when using automatic POS tags. In Ortmann (2021a), I applied the Stanza tagger (Qi et al. 2020,
German hdtmodel) to the modern data sets, which resulted in POS error rates of 4% (TüBa-D/Z)
to 6% (Modern) and reduced the F1-scores of the Regexp chunker by 1 (TüBa-D/Z) to 4 (Modern)
percentage points. The F1-scores of the best NCRF++ models with POS tags as feature decreased by
3 (TüBa-D/Z) to 3.7 (Tiger, Modern) percentage points. It can be assumed that similar reductions
would be observed for historical data if a comparable tagger model for the relevant language stages
was available and used to tag the data automatically.

In Table 6.5, the results per chunk type are displayed for the best performing model (with POS
and embeddings) on each data set. The best results are observed for noun and prepositional chunks
with F1-scores above 90%, while the results for adjective and adverb chunks range mostly between
83% and 94%. The stranded chunk types are recognized much less reliably, especially in the histor-
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ical data where the majority of errors in these categories result from structures with a pre-nominal
modifying noun chunk NC inside a prepositional chunk PC like in example (33) above. These
structures are more frequent in historical German, causing the higher proportion of stranded prepo-
sitional chunks compared to modern data. When confronted with a structure like this, in most
cases, instead of annotating a stranded preposition sPC preceding a pre-nominal noun chunk NC,
the models identify a joint PC, followed by an NC as in example (34).

(34) Target: [sPC von] [NC der Frantzosen] [PC Vorhaben]
System: [PC von der Frantzosen] [NC Vorhaben]

Since, in these cases, the embedded noun chunk cannot be recognized based on STTS POS tags,
a morphological analysis would be necessary to distinguish structures with a pre-nominal geni-
tive from prepositional chunks with a post-modifying noun chunk. When the genitive form is not
syncretized, i.e., the word form differs from the morphological realization in other cases like nomi-
native or dative, lexicalized models could, in theory, identify the correct structure. But as stranded
chunks constitute only about one percent of all chunks in the data sets, there is likely not enough
training data to recognize them reliably.

Finally, Figures 6.3 and 6.2 show the distribution of error types and confusions of labels in the
data sets. For all corpora, boundary errors constitute the majority of errors with 50% to 62%, which
means that, even in the case of errors, the models often identified the chunks but did not achieve
an exact match of the boundaries. This could be considered less severe than completely missing
(FN) or made-up chunks (FP), which are infrequent for most data sets. As discussed in Chapter 4,
this observation once again highlights the advantages of fair evaluation for a realistic impression of
model performance.

6.2. Phrase Identification64

The previous section has explored the automatic identification of chunks in modern and historical
German. However, chunks are (often) only partial constituents. The identification of complete
candidates for extraposition, thus, requires the recognition of larger, more complex units. This
section explores the automatic identification of phrases before Section 6.3 targets the identification
of relative clauses.

In the context of this thesis, phrases are understood as continuous, non-overlapping constituents
from a sentence’s parse tree. This section focuses on four main phrase types: noun phrases (NP),
prepositional phrases (PP), adjective phrases (AP), and adverb phrases (ADVP). For each sentence,
only the highest non-terminal nodes of the given types are considered, ignoring the internal structure
of phrases. This means that phrases may dominate other phrases of the same or different types, but
the dominated phrases are not evaluated here. Example (35) shows an annotated sentence from a
1731 theological text from the DTA sample.
64The content of Section 6.2 is taken from my paper Ortmann (2021b): Automatic Phrase Recognition in Historical

German and complemented with the Spoken data set and FairEval results.
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Figure 6.2.: Confusion matrix for the identification of chunks. Only errors are displayed, so the
diagonal displays boundary errors.
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Figure 6.3.: Proportion of the different error types for chunking: false positives (FP), labeling
errors (LE), shorter, longer, and overlapping boundary errors (BEs, BEl, BEo), labeling-
boundary errors (LBE), and false negatives (FN). Numbers are shown for the best model on
each data set.

82



Chapter 6: Identification of Extraposition Candidates

(35) [NP Der kraͤftigſte Bewegungs-Grund] nimmt [NP seinen Urſprung] [PP aus einer zaͤrtlichen
Leydenſchaft meines Gemuͤhts].
‘The most powerful motive takes its origin from a tender passion of my heart.’

To enable research on extraposition, phrases may not cross topological field boundaries. For exam-
ple, a prepositional phrase in the middle field is considered separate from an adjacent modifying
relative clause in the post-field, as shown in example (36) from a chemistry essay from the DTA
data set (field boundaries are indicated by vertical pipes).65 Also, discontinuous structures as they
exist in some German corpora are not allowed here.

(36) Erhebt | [NP es] [NP ſich] [PP mit dem Waſſerſtoffgas], | [NP welches] | [NP die Moraͤſte] [PP in
Ueberfluß] | ausdunſten?
‘Does it rise with the hydrogen gas that the swamps evaporate in abundance?’

6.2.1. Related Work
The recognition of phrases, as defined here, is related to chunking as well as (constituency) parsing
and can be located somewhere in between the two tasks regarding its complexity. As explained in
Section 6.1, chunking refers to the identification of non-overlapping, non-recursive phrases from a
sentence’s parse tree, ending with the head token (Sang and Buchholz 2000). As a consequence,
chunks are often shorter than phrases because post-modifying elements form separate chunks. For
simple cases without pre- or post-modifying elements, the definitions of chunks and phrases overlap.
Thus, methods that are successful at chunking may also be useful for phrase recognition.

Parsing, on the other hand, aims at a complete syntactic analysis of the sentence. Hence, the
resulting constituency tree includes more information than just the phrase annotation, e.g., dom-
inance relations, which are not considered in this study. As a result, phrase annotations can be
derived from the more complex parse output, but the complexity of the task may also reduce over-
all accuracy.

While studies on chunking observe F1-scores >95% for modern German (cf. Müller 2005; Ort-
mann 2021a), the highest F1-scores for constituency parsing of German are reported with approx.
90%, compared to 95% for English (Kitaev et al. 2019). In general, parsing results heavily depend
on the selected treebank and the inclusion of grammatical functions (Dakota and Kübler 2017)
and discontinuous structures (cf. Vilares and Gómez-Rodrıǵuez 2020). Also, all of these results
are obtained for standard language like newspaper text. For non-standard data, performance drops
must be expected (Pinto et al. 2016; Jamshid Lou et al. 2019).

65Actually, the position of the relative clause is ambiguous since the right sentence bracket is empty and the RelC
could be placed either in the middle field or in the post-field, cf. the discussion in Chapter 7. I will follow the
guidelines by Telljohann et al. (2017) in considering the relative clause as part of the post-field and, thus, separate
from its antecedent. In Chapter 7, this decision will allow to distinguish between unambiguously embedded RelCs
and ambiguous or extraposed RelCs.
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For historical German, so far, there have been experiments on chunking (Petran 2012; Ortmann
2021a; cf. Section 6.1), topological field parsing (Chiarcos et al. 2018; Ortmann 2020; cf. Chap-
ter 5), and statistical constituency parsing (Hinrichs and Zastrow 2012), but no evaluation results
exist for the latter. For chunking, the best results are observed for CRF-based sequence labeling,
with overall F1-scores between 90% and 94% (Ortmann 2021a). For topological field identifica-
tion, the application of a probabilistic parser yields overall F1-scores ≥90% (Ortmann 2020). In
this section, both of these approaches will be explored for the purpose of phrase recognition in
historical German.

6.2.2. Data
The training data for the experiment is the same as in Section 6.1, consisting of two modern (TüBa-
D/Z, Tiger) and two historical (Mercurius, ReF.UP) treebanks. All four data sets are annotated
with constituency trees, but before they can be used to train a parser or extract phrase annotations
for sequence labeling, a few modifications are necessary.

(i) The underlying annotation scheme of the Tiger corpus and the two historical treebanks allows
for discontinuous annotations, which must be removed to enable the use of standard chunking
and parsing methods (see the remarks in Section 6.1.2).

(ii) Since German exhibits a relatively free word order, grammatical functions like subject and
object play an important role in the syntactic analysis of sentences, especially for the reduction
of ambiguity (Fraser et al. 2013). For the purpose of phrase recognition, however, they are
not relevant and, therefore, mostly excluded from the trees to reduce the size of the tagset and
improve parsing performance (Rafferty and Manning 2008; Dakota and Kübler 2017).66

The modified trees can serve as training input for a parser, or they can be used to extract phrase
annotations. Contrary to chunking, where the lowest non-terminal nodes are converted to chunks
(Kübler et al. 2010; Ortmann 2021a), here, the highest non-terminal nodes of the relevant types
correspond to the desired phrases.67 Before the extracted phrases can be used for evaluation or to
train a sequence labeling tool, another difference between the annotation schemes of the treebanks
regarding topological fields must be taken into account.

66The only exception are GFs that are needed to extract correct phrases (and relative clauses) from the trees. For the
Tiger scheme, these are S:RC and S:OC. For TüBa-D/Z, the following GFs are preserved: KONJ, OS, R-SIMPX,
NX:HD dominated by PX, and NX:APP dominated by NX. Also, one-word children of sentence nodes that only
receive a grammatical function according to the Tiger scheme are assigned a phrase type NP, PP, AP, AVP, VP, or
SVP based on their POS tag.

67Again, phrases of the four types are added for one-word constituents from Tiger-style trees based on the POS tag of
the word.
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Figure 6.4.: Example modification of a sentence from the ReF.UP corpus. At the top, the original
constituency tree with discontinuous annotations according to the Tiger scheme is displayed
(image taken from https://annis.linguistics.rub.de/?id=23b13a12-1
6cb-4258-919e-2f31a53e24f7). The bracket structure to the right represents the
linearized version of the tree without crossing branches and grammatical functions. This format
can be used to train a standard parser. At the bottom, the phrase annotation for the sentence is
shown. The phrases have been extracted from the tree structure to the right and checked with a
topological field parser to ensure that phrases do not cross field boundaries (indicated by dashed
lines). The phrase annotations serve as training data for a sequence labeling tool and are also
used for evaluation.

Model #Docs #Sents #Toks #Phrases #RelCs
News1 3,075 83,515 1,566,250 388,531 12,480
News2 1,863 40,037 727,011 162,336 5,177
Hist 28 23,747 569,854 152,866 5,431
Mix 1,891 63,784 152,866 315,202 10,608

Table 6.6.: Overview of the training data for each of the models. Only sentences with a gold parse
are included, and the number of phrases refers to phrases of the four relevant types. #RelCs is
the number of relative clauses, which are relevant for Section 6.3. News1 corresponds to the
TüBa-D/Z and News2 to the Tiger corpus. Hist includes the historical treebanks Mercurius
and ReF.UP. The Mix set is a combination of the News2 and Hist sets.
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Corpus #Docs #Sents #Toks #Words #Phrases
TüBa-D/Z 364 10,488 196,630 167,844 49,329
Tiger 200 4,445 78,018 67,685 17,622
Spoken 14 23,937 285,594 234,094 106,945
Modern 78 547 7,605 6,354 2,240
Mercurius 2 818 18,740 16,401 4,400
ReF.UP 26 2,173 61,399 48,820 15,355
HIPKON 53 342 4,210 3,747 1,146
DTA 29 609 18,515 15,822 4,400

Table 6.7.: Overview of the test data. Only sentences containing at least one phrase of the four
types are included in the evaluation.

(iii) While TüBa-style trees represent a combination of constituency and topological field annota-
tions, the other three corpora that follow the Tiger scheme do not include topological fields.
This means that constituents in the TüBa-D/Z data are already bound to the corresponding
fields as required by the phrase definition in this study, whereas constituents in the other data
sets may cross field boundaries. Therefore, phrases that are extracted from these data sets or
identified by a parser that is trained on them are corrected with the help of the topological field
parser (Punctmodel) from Chapter 5. Phrases that cross fields are split at the field boundary
and replaced by the dominated sub-phrases to ensure that no phrase is located in more than
one field.68

An example of the different modifications of the trees and extracted phrases can be found in Fig-
ure 6.4. The resulting data sets are used to build four distinct training sets: News1 corresponds
to the TüBa-D/Z data, News2 is based on the Tiger treebank, Hist contains the historical data,
and a joint set Mix includes all data sets that follow the Tiger annotation scheme. Table 6.6 gives
a summary of the four training sets.

For evaluation, the test sections of the four treebanks are processed in the same way as the
training data, and phrases of the four types are extracted and split at topological field boundaries
if necessary. The Spoken data set was not included in the original study (Ortmann 2021b) but is
added here, too. In addition, the other three test sets from the previous section (Modern, HIPKON,
DTA) with manually annotated phrases are included in the study. Table 6.7 gives an overview of
the test data. In Figure 6.5, the distribution of phrase types in the test data is displayed. The most
frequent phrase type are NPs with 49% to over 60% in the Modern data set, followed by PPs with
13% to 27%. ADVPsmake up for 11% to 32%, while APs that are not dominated by other phrases
are rare with 6% or less.
68Theoretically, it would also be possible to merge the constituency trees with automatically created topological field

annotations before training a parser on the merged trees. However, experiments indicate that this creates too many
inconsistencies in the training data, e.g., due to errors in the automatic field annotation, and therefore leads to worse
results than splitting the extracted phrase output at the field boundaries afterwards.
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Figure 6.5.: Distribution of phrase types in the test data.

6.2.3. Methods
So far, the automatic syntactic analysis of historical German has been focused on the identification
of chunks and topological fields. As described in the previous sections, the best results for these
tasks are reported for sequence labeling and statistical parsing. In the following, both approaches
are applied to the recognition of phrases.

For sequence labeling, the neural CRF-based sequence labeling tool NCRF++ (Yang and Zhang
2018) is selected. It achieves state-of-the-art performance for several tasks, including tagging,
chunking, and named entity recognition in English (Yang et al. 2018). When POS tags are used as
features, it also proves successful at identifying chunks in historical German with F1-scores >90%
(Ortmann 2021a; cf. Section 6.1). The default configuration consists of a three-layer architecture
with a character and a word sequence layer plus a CRF-based inference layer. For this study, the
toolkit is trained on the extracted phrases from the four training sets, where phrases are represented
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as BIO tags. POS tags are included as additional feature and, during training, the tool is also pro-
vided with the development sections of the training corpora. For every word, NCRF++ outputs
the single most likely BIO tag, i.e., B-XP (beginning of phrase), I-XP (inside of phrase), or O
(outside of phrase). For evaluation, the labels are converted to phrases, and the best result over five
runs with different random seeds is reported.

For parsing, the unlexicalized Berkeley parser (Petrov et al. 2006) is used.69 It achieves a parsing
F1-score of 91.8% on the TüBa-D/Z corpus and 72% on the Tiger corpus (Dakota and Kübler 2017)
and has also been successfully applied to topological field parsing of historical German with overall
F1-scores ≥90% (Ortmann 2020; cf. Chapter 5). In this study, it is trained with default settings70

on the four training sets, where the modified constituency trees are used as training input. For
annotation, the parser is invoked in interactive mode.71 Given a sentence annotated with POS tags,
it returns the single best parse. For evaluation, the constituency trees are then converted to phrases,
as described in the previous section.

6.2.4. Evaluation and Results
To evaluate the performance of the selected approaches on the task of phrase recognition, the out-
put of the trained systems is compared phrase-wise to the gold standard annotation. In the original
phrase recognition study (Ortmann 2021b), I already performed an evaluation with fine-grained
error types. But the new error types were counted exclusively as false positives, which made preci-
sion and recall values hard to interpret. In this thesis, instead of repeating the complete experiment,
I report the original results for NCRF++ from Ortmann (2021b), and updated FairEval results for
the Berkeley parser, also including the Spoken data set. In all experiments, only sentences con-
taining at least one of the four phrase types are evaluated, and punctuation at phrase boundaries is
ignored.

Sequence Labeling

As already mentioned, the neural sequence labeling tool NCRF++ has been applied successfully
to the identification of chunks in German, reaching F1-scores between 90% and 94% for different
historical data sets (Ortmann 2021a, cf. Section 6.1). As could be expected from previous studies
(e.g., Petran 2012), the accuracy for the recognition of phrases, i.e., longer units, with CRF-based
sequence labeling is considerably lower. Table 6.8 (from Ortmann 2021b) gives a summary of the
results for each of the four models.

69Even though the parser is unlexicalized and called with the -useGoldPOS flag, it can de-facto take the word forms
into account. When no possible parse for the input POS sequence is found, the (undocumented) behavior is to
generate new tags for the words. Contrary to the topological field model that is directly based on POS tags as
terminal nodes, the constituency models thus may actually consider the word forms during parsing (albeit to an
unknown extent).

70java -cp BerkeleyParser-1.7.jar edu.berkeley.nlp.PCFGLA.GrammarTrainer
-treebank SINGLEFILE -out grammar.gr -path treebank.txt

71java -jar BerkeleyParser-1.7.jar -gr grammar.gr -maxLength 350 -useGoldPOS
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Corpus News1 News2 Hist Mix

TüBa-D/Z 85.18 76.82 - -
Tiger 78.93 79.69 - -
Modern 86.80 83.10 - -
Mercurius 70.25 67.83 9.05 8.93
ReF.UP 70.62 67.91 8.80 9.90
HIPKON 80.13 81.18 8.17 7.99
DTA 72.02 68.89 6.93 7.78

Table 6.8.: Overall F1-scores for phrase recognition with the sequence labeling approach (Ortmann
2021b). Models trained on historical data are only applied to the historical test sets. The table
reports the highest F1-score over five runs and the best result for each corpus is highlighted in
bold.

Using gold POS tags as feature, the two newspaper-based models still perform relatively well.
Model News1 achieves the best results with F1-scores between 70% and 87%. The results for
the second modern model News2 also lie above 67% for all data sets. Contrary to the results for
chunking (Ortmann 2021a), using historical training data does not improve the results on the his-
torical test sets. Instead, the historical and mixed models do not reach F1-scores >10% for phrase
recognition, indicating that the tool was not successful at learning to identify the different phrase
types based on the historical corpora. Possible reasons could be the high syntactic complexity
of Early New High German sentences or too much variation in the training data, e.g., caused by
the unstandardized spelling in historical German. Perhaps, using automatically generated chunks
(Chapter 6.1) as additional features could improve the results of the sequence labeling approach.

Parsing

So far, the parsing approach has been evaluated only for topological field parsing of historical Ger-
man, with overall F1-scores≥90% (Ortmann 2020). In Table 6.9, the results of the Berkeley parser
for the recognition of phrases are given. On the modern data sets, the parser achieves F1-scores
of 86% to 91%, with visible differences between the two modern models. While, unsurprisingly,
each of them performs best on the test section of the corpus it was trained on, the News1 model
also achieves the best results on the Modern and Spoken data sets and the DTA corpus, while the
News2 model performs slightly better on the other historical data sets.

In contrast to the sequence labeling results, here, including historical training data improves the
syntactic analysis of historical language – probably because the unlexicalized parser is unaffected
by the unstandardized spelling or can better handle the complex sentence structures. For three of
the four historical data sets, the Hist and Mix models outperform the modern models by ten
percentage points or more. F1-scores lie between 81% and almost 85% for the Mercurius, ReF.UP,
and HIPKON data, while the DTA is only analyzed with an F1-score of 71.5%.
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News1 News2 Hist Mix
Corpus Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1
TüBa-D/Z 91.35 91.35 91.35 82.04 81.10 81.57 - - - - - -
Tiger 83.49 84.75 84.11 85.66 87.14 86.39 - - - - - -
Spoken 88.98 89.84 89.41 80.26 82.30 81.27 - - - - - -
Modern 88.27 88.23 88.25 84.77 84.11 84.44 - - - - - -
Mercurius 61.81 64.34 63.05 66.00 65.77 65.88 81.25 81.82 81.53 81.04 81.29 81.16
ReF.UP 58.55 58.93 58.74 59.07 59.03 59.05 84.02 84.30 84.16 83.98 84.15 84.07
HIPKON 74.54 74.75 74.64 75.10 75.45 75.27 84.88 84.96 84.92 84.69 84.77 84.73
DTA 73.03 70.07 71.52 69.61 64.90 67.17 69.10 64.80 66.88 70.45 66.75 68.55

Table 6.9.: Overall precision, recall, and F1-scores (in percent) according to FairEval for phrase
recognition with the different parser models on each data set. Models trained on historical data
are only applied to the historical test sets, and the highest scores for each corpus are highlighted
in bold. Traditional evaluation results can be found in Table A.9 in the appendix.

Figure 6.6.: Comparison of the best F1-scores for sequence labeling and parsing on the different
test sets (Ortmann 2021b).

When compared to the sequence labeling tool, the parsing approach consistently yields better results
for the recognition of phrases. Figure 6.6 from Ortmann (2021b) confirms that the best parser
model outperforms the best sequence labeling model by up to 13.5 percentage points on each data
set. Only for the Modern data set and the DTA, the results of the methods are similar. For the
Modern data, this could be due to the fact that the data set contains many non-complex phrases that
are similar to chunks, e.g., simple noun phrases. 54% of the phrases in this data set consist of only
one token, compared to 35%–50% in the other data sets, which makes it easier for the sequence
labeling approach to identify them.
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Corpus NP PP AP ADVP

TüBa-D/Z 91.32 88.73 90.99 95.03
Tiger 87.69 84.82 79.86 87.18
Spoken 90.89 77.55 84.81 92.68
Modern 90.30 81.98 83.92 88.82
Mercurius 82.07 77.63 71.81 88.48
ReF.UP 86.40 80.72 69.25 85.81
HIPKON 85.84 81.32 66.67 89.50
DTA 71.10 70.14 73.98 74.14

Table 6.10.: Overall F1-scores for each label (in percent) according to FairEval for the best per-
forming parser model on each data set.

However, parser accuracy also declines for longer units (cf. Bastings and Sima’an 2014). While
the Berkeley parser reaches overall parsing F1-scores of 92% and 86% for the modern data and
78%–79% for the historical data (cf. Table A.10 from Ortmann 2021b in the appendix), F1-scores
heavily decline for longer constituents and phrases (see Figure 6.7 from Ortmann 2021b). For
constituents with more than five words, the average F1-score of the four models is only about 70%.
For phrases, the reduction is even larger with F1-scores below 40% for phrases of twenty or more
words. This observation may, in part, explain the lower results for the DTA because, proportionally,
this data set contains about twice as many phrases of twelve or more words than the other corpora,
due to many dedications and very long phrases with coordinations and dominated sentences, e.g.,
in legal texts. A parser that performs better on longer constituents might be better equipped to
analyze this data set.

Table 6.10 reports the parser results broken down by phrase types. For most data sets, the highest
F1-scores are reached for adverb and noun phrases. While the former are usually very short and
therefore easier to identify, noun phrases and prepositional phrases often contain pre- and/or post-
nominal modifiers including longer constituents like relative clauses that lead to errors in the parser
output. Adjective phrases are the least frequent phrase type and, although they tend to be short, also
show the least accurate results for more than half of the data sets. Often they get mixed up with
neighboring adverbs (cf. Figure 6.8) because a lexicalized model would be necessary to distinguish
between pre-modifying adverbs as in example (37) and a separate adverb phrase in (38).

(37) Sie war [AP sehr/ADV glücklich/ADJD].
‘She was very happy.’

(38) Sie war [ADVP gestern/ADV] [AP glücklich/ADJD].
‘Yesterday, she was happy.’
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Figure 6.7.: Average F1-score of the four parser models for the recognition of constituents and
phrases of sizes 1–25. The number of constituents includes all constituents of the given sizes
in the test sections of the four training corpora. The number of phrases refers to phrases of the
four types in the seven test sets from Ortmann (2021b).
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Figure 6.8.: Confusion matrix for the identification of phrases. Only errors are displayed, so the
diagonal displays boundary errors.
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Figure 6.9.: Proportion of the different error types for phrase recognition: false positives (FP), la-
beling errors (LE), shorter, longer, and overlapping boundary errors (BEs, BEl, BEo), labeling-
boundary errors (LBE), and false negatives (FN). Numbers are shown for the best parser model
on each data set.

Finally, Figure 6.9 shows the distribution of error types for the best parser models. For all test sets,
boundary errors are the most frequent error types with a proportion of 51% to 65%. The remaining
errors are mostly labeling-boundary errors, while traditional false positives and false negatives are
infrequent. Considering that the identification of phrases with almost correct boundaries may still
satisfy the requirements of certain tasks, this can thus be assumed for a large proportion of the
errors. Furthermore, the results suggest potential for improvement because the high percentage of
boundary errors means that the parser already identified these phrases, and correcting boundaries
could potentially lead to significantly higher accuracy.
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Corpus #Docs #Sents #Toks #Words #RelCs
TüBa-D/Z 364 10,488 196,630 167,844 1,620
Tiger 200 4,445 78,018 67,685 566
Spoken 14 23,937 285,594 234,094 333
Modern 78 547 7,605 6,354 65
HIPKON 53 342 4,210 3,747 46
DTA 29 609 18,515 15,822 171

Table 6.11.: Overview of the test data. Only sentences containing at least one candidate for extra-
position (phrase or relative clause) are included in the evaluation.

6.3. Relative Clause Identification
The previous section has explored the identification of phrases. In this section, the experiments are
extended to relative clauses (RelCs). Although the focus of this thesis is on attributive RelCs, in
this section, I will start with the identification of relative clauses in general.

Conveniently, the RelC annotation is already included in the constituency trees output by the
Berkeley parser (cf. Section 6.2) and can simply be extracted from them. In addition to the tree
nodes that are explicitly labeled as relative clauses,72 I also consider sentences whose first constituent
is a relative pronoun or dominates one. Based on experiments with the development data, this can be
expected to increase annotation recall. For (historical) corpora with custom POS tagsets, both the
original and STTS tags are consulted for identifying the relativizers (cf. the discussion in Chapter 5).

Since the extraction of relative clauses from the two historical treebanks is a bit complicated (and
no information about the antecedent or topological fields is provided), only the other six data sets
from the previous section are used for the evaluation of RelCs. Table 6.11 gives an overview of the
test data.

In Table 6.12, the results for RelC identification with the Berkeley parser and the models from
Section 6.2 are shown. For the modern data sets, F1-scores lie between 91% and 96%, which is
2–10 percentage points higher than for phrase recognition. For the historical data sets, scores are
4–5 percentage points higher, with about 77% and 88%. It can be assumed that this difference is
due to the distinctive structure of RelCs, which always start with some relativizer and usually end
with a verb, whereas phrase boundaries are not as clear. In general, precision is always higher than
recall, and models that performed best on a data set in Section 6.2 also achieve the highest scores
for RelC identification (except for the DTA).

72Labels for relative clauses are R, R-SIMPX, R-SIMPX:KONJ (TüBa-style) or S:RC (Tiger-style).
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News1 News2 Hist Mix
Corpus Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1
TüBa-D/Z 96.47 95.85 96.16 91.74 90.45 91.09 - - - - - -
Tiger 94.64 94.64 94.64 96.52 96.17 96.34 - - - - - -
Spoken 92.13 90.35 91.23 90.94 88.27 89.59 - - - - - -
Modern 93.44 91.94 92.68 88.89 87.39 88.14 - - - - - -
HIPKON 85.71 68.18 75.95 86.67 59.09 70.27 89.66 87.64 88.64 88.64 88.64 88.64
DTA 81.95 72.19 76.76 76.92 69.93 73.26 77.09 72.35 74.65 77.89 75.77 76.82

Table 6.12.: Overall precision, recall, and F1-scores (in percent) according to FairEval for RelC
recognition with the different models on each data set. Models trained on historical data are
only applied to the historical test sets, and the highest scores for each corpus are highlighted in
bold. Traditional evaluation results can be found in Table A.11 in the appendix.

Figure 6.10 shows the distribution of error types. For most data sets, boundary errors are by far
the most frequent error type (30%–90%). Except for the Modern and DTA data sets, the parser
tends to identify RelCs as too long rather than too short. Relevant proportions of false negatives and
false positives are only observed for the historical data sets. However, it has to be kept in mind that
there is only a small absolute number of errors (TüBa-D/Z: 120, Tiger: 40, Spoken: 54, Modern: 9,
HIPKON: 10, DTA: 67), so the error distribution may not be representative for some of the data
sets.

6.4. Discussion
In this chapter, I have explored the automatic identification of candidates for extraposition, starting
with chunks before proceeding to more complex constituents. As expected from the literature, eval-
uation results are better for shorter units (chunks) compared to longer ones (phrases), while relative
clauses are recognized with high accuracy in most data sets, despite their length. The remaining
errors are often caused by incorrect boundaries, which leaves room for further improvement.

Contrary to the previous chapter on topological field parsing, historical training data was available
for the syntactic annotation studies in this chapter. Interestingly, the inclusion of the historical data
improved the results for chunking and phrase recognition with a constituency parser but not for
phrase recognition with the sequence labeling tool. One possible explanation I found in (Ortmann
2021b) could be the more complex task in combination with too much variation in the data due
to the unstandardized spelling in historical German. The variation of word forms does not affect
the unlexicalized parser but may prevent more accurate analyses with lexicalized (neural) models.
Future studies could experiment with spelling normalization, which was observed to improve the
annotation results of modern NLP tools for dependency parsing of Middle English (Schneider et al.
2015) or tagging historical German (Bollmann 2013) and Dutch (Tjong Kim Sang et al. 2017).
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Figure 6.10.: Proportion of the different error types for RelC recognition: false positives (FP),
shorter, longer, and overlapping boundary errors (BEs, BEl, BEo), and false negatives (FN).
Only one label (RELC) is evaluated, so labeling and labeling-boundary errors cannot occur.
Numbers are shown for the best model on each data set.

The normalized data could then also be used to explore lexicalized parsing, e.g., with the neu-
ral Berkeley parser (Kitaev and Klein 2018). Although parsers do not necessarily need lexical
information for good performance (Coavoux et al. 2019), studies on modern English show that
the application of neural parsing methods in combination with pre-trained word embeddings can
further improve the results (cf., e.g., Vilares and Gómez-Rodrıǵuez 2020). For morphologically
more complex languages like German, this should be even more relevant (Fraser et al. 2013) and
could also help in cases where lexical information is necessary to decide about the correct phrase
boundaries.
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CHAPTER 7

Automatic Analysis of Extraposition

The preceding Chapters 5 and 6 have built the foundation for the automatic recognition of extra-
position. First, I explored the topological field analysis and trained models to automatically find
the post-field in modern and historical German (Chapter 5). Then, I developed methods to identify
selected candidates for extraposition that could be moved from the middle field to the post-field
(Chapter 6). I focused on elements that are expected to show at least some variability concerning
their position in the middle field and post-field, namely noun phrases, prepositional phrases, adjec-
tive and adverb phrases, and (attributive) relative clauses. In this chapter, the puzzle pieces are put
together for a completely automatic analysis of extraposition.

The chapter consists of three parts. Section 7.1 deals with the base position of extraposed el-
ements, i.e., the original or unmarked position in the middle field, and explores the automatic
identification of antecedents for attributive constituents. Given the annotations from Chapters 5–6
and information about the base position, Section 7.2 then describes how to decide whether a con-
stituent is extraposed, left in situ, or if the position is ambiguous. Finally, Section 7.3 explains how
these results can be used to automatically inspect the effects of extraposition with a corpus of vari-
ants, in which the extraposed constituents have been artificially moved back to their base position.
The chapter concludes with a discussion in Section 7.4.

7.1. Base Position
The definition of extraposition from Chapter 2 assumes that extraposed constituents have been
‘moved’ from the middle field (or sometimes the pre-field) to the post-field of the sentence. That
entails that the original, unmarked position of the constituents is somewhere in the middle field (or
pre-field). I will refer to this original position as the ‘base position’ of the constituent. For example,
the unmarked base position of the PP in example (39a) from the Modern data set would be in the
middle field as in (39b).

(39) a. Das ist mir ganz klar geworden, schon bei dieser kurzen Trennung.
b. Das ist mir schon bei dieser kurzen Trennung ganz klar geworden.

‘That has become very clear to me, even from this short separation.’

However, due to the relatively free word order in German, especially in the middle field, the base
position depends on several interrelated factors (e.g., grammatical aspects and information struc-
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ture) and is not always easy to determine for all extraposed elements, especially for adjuncts and
complements (Frey and Pittner 1998; Lenerz 1977, among others). For instance, two base po-
sitions (a vs. b) are equally possible for the extraposed PP in example (40) from the TüBa-D/Z
corpus, and even more alternatives exist with an increasing number of constituents in the middle
field.

(40) Würdest du den Mönchen, die jeden Tag meditieren hinter ihren Mauern, auch sagen, sie
hätten einen Knastkoller?

a. ... den Mönchen, die jeden Tag hinter ihren Mauern meditieren, ...
b. ... den Mönchen, die hinter ihren Mauern jeden Tag meditieren, ...

‘Would you also tell the monks who meditate every day behind their walls that they suffer from
prison-induced madness?’

As a consequence, currently, only the base position of attributive constituents like relative clauses
can be unambiguously identified automatically. Their designation as ‘attributive’ or ‘relative’ already
indicates that they are used relative to something else, e.g., providing additional information about a
modified noun, as in example (41) from the DTA sample. I will refer to the modified element as the
antecedent. For attributive constituents, the base position is directly to the right of the antecedent,
even though both positions (extraposed and adjacent to the antecedent) are equally grammatical, at
least for attributive clauses.

(41) Erhebt es ſich [Antec mit dem Waſſerſtoffgas], [RELC welches die Moraͤſte in Ueberfluß aus-
dunſten?]
‘Does it rise with the hydrogen gas that the swamps evaporate in abundance?’

As Zifonun et al. (1997) note, the relation to the antecedent is also the reason why attributive clauses
are the clause type that is least prone to be located in the post-field. Since they can always be placed
adjacent to their antecedent, they are the only clausal elements for which significant variability of
their positioning in the middle field vs. post-field is observed.

Similarly, attributive phrases likePPsmay show interesting differences from independent phrases
regarding their likelihood of extraposition (cf., Voigtmann and Speyer forthcoming). However, the
overall frequency of extraposed attributive phrases is much too low for a reliable automatic iden-
tification or meaningful statistical analysis. Therefore, I will treat them like independent phrases
and focus on attributive relative clauses for the remainder of this section.

In particular, I will explore how the antecedent and, hence, the base position of attributive relative
clauses can be identified automatically in modern and historical German. I will focus on attributive
relative clauses with a (pro-)nominal antecedent, assuming that the antecedent is a phrase of typeNP
or PP, as defined in Chapter 6.2. Other types of relative clauses (independent RelCs, continuous
RelCs) are not considered here because they do not have an antecedent in the sentence, or their
antecedent is the whole sentence, leaving only the end of the sentence (i.e., the post-field) as possible
base position.
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7.1.1. Data
To evaluate the recognition of antecedents, the same test sets as in Chapter 6.3 are used. For
the Modern, HIPKON, and DTA samples, manually annotated relative clauses and antecedents
are available. For the other three data sets, relative clauses are extracted from the constituency
trees (cf. Chapter 6.3) and automatically linked to their antecedents. As already mentioned, only
(pro-)nominal antecedents of attributive relative clauses are considered.

For the newspaper corpora, target antecedents are identified via dependency relations. For each
RelC, the token linked to its (verbal) head via the respective relation rc or relc is selected.73 The
antecedent then corresponds to the token’s parent in the constituency tree. Consider the following
example of a simplified Tiger-style tree from the Tiger corpus:

‘What makes the human who can meet the demands of the environmental crisis?’

The relative clause S:RC from the constituency analysis is linked to the word Menschen via the rc
dependency relation. The NP that dominates the token Menschen is thus selected as the antecedent
of the RelC, with Menschen being the head of the antecedent.

For the Tiger corpus, the officially provided dependency annotations are used, whereas more
accurate results are achieved for the TüBa-D/Z data with a modern neural parser.74 The official
(automatically generated) dependencies are only consulted if the parser does not find a suitable
dependency head for the RelC.

For the Spoken data, automatic dependency annotations are often not accurate enough. Instead,
antecedents are identified solely based on the constituency analysis. Either the antecedent con-

73The dependency link can be established directly or indirectly in the case of coordinated relative clauses.
74I selected the fast and accurate spaCy parser (version 3.2.4, https://spacy.io/) with the German trans-

former model (de_dep_news_trf-3.2.0; labeled attachment score is stated as 95%) because it seems to be
more accurate at identifying the dependency head of relative clauses than the officially provided dependencies in the
development data.
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‘Would you be interested in participating in a city tour of Hannover?’

‘I have already picked out a few hotels, which are located in the city center.’

Figure 7.1.: Simplified TüBa-style tree of a sentence with in situ RelC (top) and a sentence with
extraposed RelC (bottom) from the Spoken data set.
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Corpus #Docs #Sents #Toks #Words #ExtrapCandidates #Antecs
TüBa-D/Z 364 10,488 196,630 167,844 54,498 1,558
Tiger 149 522 15,075 12,986 540 540
Spoken 14 23,937 285,594 234,094 108,141 324
Modern 78 547 7,605 6,354 2,314 65
HIPKON 53 342 4,210 3,747 1,303 46
DTA 29 609 18,515 15,822 4,563 163

Table 7.1.: Overview of the test data. Only sentences containing at least one candidate for extrapo-
sition (phrase or attributive relative clause) are included in the evaluation. For the Tiger corpus,
#ExtrapCandidates include only RelCs, because no gold standard topological fields are avail-
able. #Antecs refers to antecedents of attributive relative clauses.

sists of the preceding tokens dominated by the parent node in the constituency tree (e.g., an einer
Stadtrundfahrt in Figure 7.1, top). Or, if the relative clause is not directly dominated by a phrase,
the antecedent is considered to be the preceding NP or PP (einige Hotels in Figure 7.1, bottom).
The head token of the constituent is also the head of the antecedent. Even though this is only
an approximation, it seems accurate enough for the simple sentence structures of spoken German.
Table 7.1 gives an overview of the test data that is used for the experiments.

7.1.2. Method
The automatic extraction of target antecedents from the gold data sets in the previous section already
illustrates two possible ways to identify antecedents automatically. Using dependency relations as
for the newspaper corpora appears to be the most natural way, given that antecedents can be located
directly adjacent to the relative clause as well as (almost arbitrarily) far away from it.

However, while this might be a practical solution for modern (standard) German, models for de-
pendency parsing of historical German do not exist yet. It may be possible to transfer a dependency
parser from modern to historical data, similar to my experiments on other syntactic annotations in
Chapters 5 and 6 (cf. Krielke et al. 2022). But this approach likely requires POS-based models to
compensate for the different, unstandardized word forms in historical language. Or for dependency
parsers like the spaCy parser75 that operate on word forms and not POS tags, the historical data
would have to be modernized before applying the parser. And even then, it remains an open ques-
tion of how much the different sentence structures in historical data would affect parser accuracy
(cf. the observations in the previous chapters and Krielke et al. 2022).

As a consequence, the exploitation of dependency relations seems impractical for identifying
antecedents, at least within the scope of this thesis. Instead, I decided to use very simple heuristics
that require only the existing annotations from the previous chapters. Assuming that the antecedent
and relative clause are either directly adjacent to each other or separated only by the right sentence

75https://spacy.io/
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bracket in most cases (cf., e.g., Zifonun et al. 1997; Uszkoreit et al. 1998), it may be sufficient to
select the phrase closest to the left of the relative clause that could qualify as antecedent.

Given an identified RelC, its parent node in the constituency tree is determined (e.g., the NP in
example (42) from the DTA, or the prepositional phrase in Figure 7.1, top). If the parent node is
a noun or prepositional phrase, the dominated tokens that precede the RelC are taken to form the
antecedent (Die Flasche in (42), and an einer Stadtrundfahrt in Figure 7.1, top).

(42) [NP Die Flaſche, [RELC welche dieſe Miſchung enthielt]], war klar und durchſichtig;
[Antec Die Flaſche], [RELC welche dieſe Miſchung enthielt], war klar und durchſichtig;
‘The bottle that contained this mixture was clear and transparent.’

If the relative clause is not dominated by a phrase, i.e., RelC and antecedent are not adjacent, the
NP or PP closest to the left in the constituency tree is considered to be the antecedent (e.g., den
Steten in example (43) from the HIPKON data, or einige Hotels in Figure 7.1, bottom).

(43) Es gehe dem ſelben menſchen / wie es [Antec den Steten] ergangen iſt / [RELC die der HERR
one barmhertzigkeit vmbgekert hat.]
‘May that person be treated like the cities that the Lord converted without mercy.’

If this antecedent is dominated by another relative clause, the RelCs are considered coordinated and
share the antecedent of the left-most RelC, as in example (44) from the HIPKON data set.

(44) vn̄ ſuͥlen vͥns ſchamē [Antec1+2 etlicher zimlich’ díngē] [RELC1 duͥ nít verbottē ſínt] /
vn̄ [RELC2 dc mā wol tete].
‘And we should be ashamed of some decent things that are not forbidden and that one would
do.’

For each antecedent, in addition to the span, the head token is determined based on the hierarchi-
cal structure of the phrase and POS tags. The algorithm first checks the tokens that are directly
dominated by the phrase. If there are no such tokens, e.g., due to coordination, the token children
of the last dominated child phrase are checked. Possible head tokens are then filtered by their POS
tags. The following POS tags are considered (in the given order):

1. Nouns (NN, TRUNC)
2. Names (NE)
3. Pronouns (substituting pronouns only)
4. Numbers (CARD)
5. Adjectives (ADJA)76

76Nominalized adjectives are tagged as ADJA like normal attributive adjectives according to the STTS (Schiller et al.
1999). So adjectives are allowed as heads if the antecedent does not include a noun.
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6. Foreign words (FM)

The first category with a matching token is selected. In example (44), the antecedent phrase contains
two adjectives (etlicher and zimlich’) and one noun (díngē). So the first match would return the
head noun díngē. If there is more than one matching token, e.g., several names or a noun with
post-nominal modification, the last head candidate is chosen because it is closest to the relative
clause.

In the case of coordinations, the RelC could refer to one or all of the conjuncts, cf. example
(45a) vs. (45b). This difference cannot be distinguished without a morphological analysis, and even
then may remain ambiguous because relative pronouns are identical for plural and feminine singular
referents (cf. example 46). While it depends on the constituency analysis whether one or all of the
conjuncts are analyzed as antecedent, I always select the last possible candidate as the head token
(underlined in the examples).

(45) a. [Antec Die Frau und der Mann], die ...
b. Die Frau und [Antec der Mann], der ...

‘The woman and the man who ...’

(46) a. [Antec Die Frau und die Kinder], die ...
b. Die Frau und [Antec die Kinder], die ...

‘The woman and the children who ...’

7.1.3. Evaluation and Results
For evaluation, the automatically identified antecedents are compared span-wise to the target anno-
tation. Only sentences that contain a candidate for extraposition are included in the evaluation, and
punctuation is ignored. Despite these similarities, the exact evaluation procedure for antecedents
differs from other evaluations in this thesis. In particular:

(i) Antecedents are not labeled, so there are no LE and LBE errors (comparable to the RelC
annotation in Chapter 6.3).

(ii) Antecedents must always be evaluated with respect to the corresponding relative clause – if
the RelC is missing, the antecedent will also be missing. And if the antecedent is linked to the
wrong RelC, it is incorrect independent of its position.

(iii) The right boundary of the antecedent is much more relevant than the span itself (at least in
the context of this thesis) because a fuzzy match with correct right boundary is sufficient for
determining the base position of the RelC and the distance between both.

(iv) Annotation accuracy likely depends on the distance to the relative clause.
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To account for these differences, the error types from Chapter 4 are re-defined for the evaluation
of antecedents and complemented with two newly created categories:

TP Antecedent with correct boundaries, linked to correct RelC
BEs, BEl, BEo Boundary error of the respective type, linked to correct RelC
BEright Error of type BEs, BEl, or BEo with correct right boundary
IL Antecedent of correct RelC but in an incorrect location

(not overlapping with the target antecedent)
FP Antecedent only in system annotation, e.g., caused by false positive RelC
FN Antecedent only in target annotation, e.g., caused by false negative RelC

Error types are counted for each distance and overall, with distance being measured as the number
of intervening tokens between antecedent and RelC (ignoring punctuation). For the calculation of
precision, recall, and F1-score, the new error categories are treated like boundary errors (Eq. 7.1).

1BEs = 1BE l = 1BEo = 1BEright = 1IL = 0.5FP + 0.5FN (7.1)

In addition, a weighted score F1right is calculated, for which errors of type BEright are counted as
true positives (Eq. 7.2).

1BEright = 1TP (7.2)

Table 7.2 shows the results for antecedent identification with the four parser models from Chap-
ter 6.2. For the modern newspaper data, the simple heuristics reach F1-scores of 78% and 79%,
respectively. The modern spoken and non-newspaper data sets are analyzed with even higher
F1-scores >83%. The models that achieved the best results for RelC recognition in modern data
in Chapter 6.3 also perform best for the identification of antecedents in the same data set. For
the historical data, the HIPKON corpus, once again, shows higher results than the DTA, with an
F1-score of 83% vs. about 69%.

Interestingly, most of the errors are boundary errors (36%–79%, cf. Table 7.3). Often, the
system antecedents are longer than the target annotation. But in many of these cases, the errors only
concern the left boundary, while the (more important) right boundary is correct (28%–74%, see
also Figure 7.2). That can happen, e.g., when the antecedent is the embedded post-modifier and not
the completeNP, as in example (47) from the DTA. Even though the system annotation is technically
incorrect in this case, the analysis is accurate enough for the identification of extraposition and the
RelC’s base position. When the (irrelevant) BEright errors are counted as true positives, F1right lies
between 82% and 96%, which is stunningly high considering the simplicity of the identification
approach.

105



Chapter 7: Automatic Analysis of Extraposition

Model TüBa-D/Z Tiger Spoken Modern HIPKON DTA

News1

Prec 77.64 71.21 86.01 83.19 75.00 72.29
Rec 80.65 75.46 86.01 83.19 58.54 64.98
F1 79.12 73.27 86.01 83.19 65.75 68.44
F1right 92.61 88.10 95.13 96.06 77.50 81.91

News2

Prec 75.92 76.39 80.95 79.63 69.23 69.88
Rec 78.08 80.09 79.21 78.18 45.00 64.68
F1 76.98 78.20 80.07 78.90 54.55 67.18
F1right 91.43 88.06 94.42 91.80 73.68 82.59

Hist

Prec - - - - 82.93 67.69
Rec - - - - 80.95 65.19
F1 - - - - 81.93 66.42
F1right - - - - 89.89 81.61

Mix

Prec - - - - 83.33 69.14
Rec - - - - 83.33 68.63
F1 - - - - 83.33 68.89
F1right - - - - 89.89 82.00

Table 7.2.: Overall precision, recall, F1-score, and F1 with correct right boundary (in percent)
according to FairEval for antecedent recognition with the different models on each data set.
Models trained on historical data are only applied to the historical test sets, and the highest
scores for each corpus are highlighted in bold.

Corpus FP
BE

IL FN
BEs BEl BEo BEright BEall

TüBa-D/Z 11.25 25.54 43.57 1.07 60.18 70.18 16.43 2.14
Tiger 12.08 18.75 42.50 1.67 49.58 62.92 23.75 1.25
Spoken 8.54 28.05 43.90 2.44 62.20 74.39 8.54 8.54
Modern 5.26 26.32 47.37 5.26 73.68 78.95 10.53 5.26
HIPKON 12.00 12.00 24.00 0.00 28.00 36.00 4.00 48.00
DTA 9.64 15.66 30.12 1.20 36.14 46.99 16.87 26.51

Table 7.3.: Proportion of the different error types: false positives (FP), shorter, longer, and over-
lapping boundary errors (BEs, BEl, BEo), boundary errors with correct right boundary and
boundary errors in general (BEright , BEall), antecedents in an incorrect location (IL), and false
negatives (FN). BEright errors include errors of types BEs and BEl. Numbers are given in per-
cent for the best model on each data set.
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Figure 7.2.: Proportion of the different error types for antecedent identification: false positives
(FP), boundary errors with correct right boundary (BEright) and without correct right bound-
ary (BE), antecedents in an incorrect location (IL), and false negatives (FN). Numbers are
shown for the best model on each data set.
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(47) Euer Königliche Majeſtät genießen das göttliche Vergnügen, [NP eine Freundin und Kennerin
[NP der ſchönen Natur]] zu ſeyn, [RELC in deren Tempel Allerhöchſtdieſelben ſo gerne des
Glanzes Allerhöchſtdero Thrones vergeſſen] [...]
Target: ... eine Freundin und Kennerin [Antec der ſchönen Natur] ...
System: ... [Antec eine Freundin und Kennerin der ſchönen Natur] ...
‘Your Royal Majesty enjoys the divine pleasure of being a friend and connoisseur of beautiful
nature in whose temple you so gladly forget the splendor of your throne.’

False negatives, which mainly result from errors in the RelC annotation, are rare in the modern
data sets. In the historical corpora, which also show lower accuracies for RelC identification in
Chapter 6.3, FNs are more frequent. The main reason for false positives in the modern data are
non-attributive relative clauses, which are analyzed as attributive RelCs by the simple heuristics.
IL errors, i.e., antecedents linked to the correct RelC but located in the wrong place, are most

frequent in the news corpora and the complex DTA texts and occur especially for longer distances,
which is a logical consequence of the applied heuristics. If another constituent is placed before the
relative clause that could qualify as antecedent according to the simple heuristics (e.g., the PP in
example (48) from the Tiger corpus), more elaborate analyses (e.g., including agreement checking)
would be necessary to identify the correct antecedent.

(48) Bündnis 90/Die Grünen wollen im kommenden Frühjahr [Antec ein Einwanderungsgesetz]
[PP in den Bundestag] einbringen, [RELC das die Aufnahme von Einwanderern mit Quoten
regelt.]
‘Bündnis 90/Die Grünen want to introduce an immigration law in the federal parliament next
spring that would regulate the admission of immigrants with quotas.’

Cases like this are infrequent, though. The evaluation confirms that almost all relative clauses are
placed within a distance of one or two words from the antecedent, in accordance with the obser-
vations by Uszkoreit et al. (1998). Greater distances mainly result from coordinated RelCs, which
are explicitly covered by the heuristics. So, in general, the developed method seems sufficiently
accurate for the identification of antecedents in the context of this thesis.

For completeness, Table 7.4 shows traditional precision, recall, and F1-scores for antecedent
heads, even though they are not relevant for the purpose of identifying the base position. Since
the head cannot be correct if the antecedent is missing or annotated at the wrong position, the table
includes the results for all antecedents and for antecedents with correct (right) boundaries only. The
results show that the head token is identified with high accuracy if at least the right boundary of
the antecedent is recognized correctly, speaking in favor of always selecting the right-most possible
head. F1-scores range between 80% and 96.5% for antecedents with correct right boundary and
over 95% to 100% for completely correct antecedent spans.
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All Right Correct
Corpus Prec Rec F1 Prec Rec F1 Prec Rec F1

TüBa-D/Z 72.81 73.30 72.32 80.55 79.83 81.28 96.71 95.66 97.78
Tiger 66.97 67.78 66.18 79.01 78.12 79.91 97.55 96.96 98.15
Spoken 87.99 86.24 89.81 92.69 92.08 93.31 98.81 98.81 98.81
Modern 80.62 80.00 81.25 84.30 83.61 85.00 95.74 95.74 95.74
HIPKON 74.07 65.22 85.71 93.33 90.32 96.55 95.65 91.67 100.00
DTA 70.36 65.45 76.06 89.36 87.50 91.30 96.09 95.56 96.63

Table 7.4.: Precision, recall, and F1-scores (in percent) according to traditional evaluation for an-
tecedent head identification on each data set with the model with the highest F1right-score from
Table 7.2. Results are given for all antecedents (All), for antecedents that are linked to the
correct RelC and have (at least) a correct right boundary (Right), and for antecedents that are
linked to the correct RelC and have two correct boundaries (Correct).

7.2. Identification of Extraposition
Given the developed methods from Chapters 5–6 and the identification of antecedents from Sec-
tion 7.1, the position of extraposition candidates can be determined. Two basic positions are dis-
tinguished:

insitu The constituent is placed in its base position.
extrap The constituent is extraposed, i.e., it has been ‘moved’ to the post-field.

In addition to these options, a third case can occur when the right sentence bracket is empty. As
explained in Chapter 5, the boundary between the middle field and post-field must not always be
marked explicitly. The respective elements that are located at this boundary could thus belong
to the middle field (insitu) or the post-field (extrap). In this thesis, I adopt a conservative
perspective similar to Telljohann et al. (2017) and only consider phrases as part of the post-field if
they are placed behind an explicit right bracket. If the right bracket is empty, phrases are analyzed
as part of the middle field and labeled as insitu, although this may not necessarily be true, e.g.,
in historical or spoken data.

For attributive constituents like relative clauses, the position depends not only on the topological
field but also on the location of their antecedent. Here, RelCs are labeled as extrap if they are
unambiguously separated from their antecedent, either by the sentence bracket or other words, even
if they are not placed in the post-field. For RelCs that are adjacent to their antecedent, the label
depends on the position relative to the topological fields. If the antecedent and RelC are both placed
in the pre-field, in the middle field before other constituents and/or a right bracket, or in the post-
field behind a right bracket, the RelC is considered as insitu. If the antecedent and RelC are
located at the end of the middle field with an empty right bracket, the position cannot be determined
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unambiguously. While Telljohann et al. (2017) would annotate the RelC as part of the post-field,
I will use a third category ambig to distinguish them from clearly extraposed cases. In studies
on relative clause extraposition, ambiguous cases are usually discarded (e.g., Sahel 2015; Uszkoreit
et al. 1998).

ambig Only for RelCs: The right sentence bracket is empty, and the RelC is located adjacent
to its antecedent at the end of the middle field or beginning of the post-field.

7.2.1. Data
For evaluation, the same test data as in the previous section (Table 7.1) is used, with five data sets
providing gold annotations of all extraposition candidates. The Tiger corpus does not contain a
topological field analysis, so only the position of relative clauses can be reliably extracted from the
existing annotations (complemented by an automatic topological field analysis in ambiguous cases).
Figure 7.3 shows the distribution of positions by extraposition candidate in the different data sets.

For phrases, extraposition is the exception rather than the rule. Except for the HIPKON data,
which only includes sentences with at least one extraposed element, almost all phrases are left
in situ. In modern German, NPs and APs are extraposed least often, whereas ADVPs are the
least frequently extraposed phrase type in historical German. PPs are the phrase type with the
highest proportion of extraposition in all data sets (3%–10%, HIPKON: 70%). As expected, phrasal
extraposition is more frequent in non-standard language than in newspaper text and even more so
in spoken than written German.

For attributive relative clauses, extraposition is considered grammatical in German, which is
reflected in 23%–31% extraposed RelCs in the modern data sets. In the historical corpora, RelCs
occur adjacent to their antecedent more often (56%–95%). Ambiguous cases with empty right
brackets are less frequent in the historical samples (≤15%), while they account for 30%–55% of
the cases in modern German.

7.2.2. Method
To determine the position of constituents as insitu, extrap, or ambig, phrases and relative
clauses are identified as described in Chapter 6 and located within the topological field analysis
from Chapter 5. The exact procedure differs slightly for phrases and RelCs, especially regarding
the number of positions (2 vs. 3) and the role of antecedents (Section 7.1).
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Figure 7.3.: Distribution of positions for the different extraposition candidates in the test data sets.
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Position of Phrases

For phrases, the position is determined based on the constituency tree and the topological field
analysis. Theoretically, it should be possible to merge the two trees (comparable to the TüBa-style
annotation by Telljohann et al. 2017) and read off the position directly from the combined tree.
However, automatically generated parses likely contain errors, which hinder the intersection of
trees and cause inconsistent results. Instead, I only combine the relevant parts of the two syntactic
analyses to prevent the propagation of errors as much as possible.

Step 1 Phrases of the four typesNP,PP,AP, andADVP are identified with the Berkeley parser and
each of the constituency models News1, News2, Hist, and Mix. Contrary to the procedure in
Chapter 6.2, the internal structure of phrases is retained because they may include other (potentially
extraposed) phrases that should also be recognized, as in example (49) from the TüBa-D/Z data.

(49) Würdest du [NP-insitu den Mönchen, die jeden Tag meditieren [PP-extrap hinter ihren Mau-
ern]], auch sagen, sie hätten einen Knastkoller?
‘Would you also tell the monks who meditate every day behind their walls that they suffer from
prison-induced madness?’

The result of Step 1 for an example sentence from the Spoken data set could look as follows:

‘I know Hannover a little bit.’

Step 2 To identify post-fields, a topological field analysis of the sentence is carried out with the
Punct model from Chapter 5. The News1 model achieves higher scores for two of the mod-
ern corpora, but the pure POS-based topological field model seems to generalize better to other
language varieties and historical data. Therefore, the same model is used for all data sets. The
following could be an analysis of the example sentence:
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Step 3 For each phrase from Step 1, the corresponding topological field from Step 2 must be iden-
tified. The respective field is the lowest node in the topological field tree that dominates all tokens
of the phrase (ignoring punctuation). If no matching field is found, this likely indicates a boundary
error, either for the phrase or the field. In this case, the lowest node from the topological field tree
that dominates the first token of the phrase is selected (again, ignoring punctuation). Experiments
with the development data suggest that this makes the analysis more robust against incorrect bound-
aries, as illustrated by example (50) from the HIPKON data, where the automatically recognized
post-field NF is too short and overlaps only with the first part of the PP.

(50) alſo ſtât h’re Dauid aínes tages v̂f [NF nach mittē tage] do er hat geſclâfen.
alſo ſtât h’re Dauid aínes tages v̂f [PP nach mittē tage do er hat geſclâfen].
‘So one day, Shepherd David gets up after the middle of the day, where he had slept.’

For the example sentence, the mapping of phrases to fields would be as follows:

Step 4 Finally, the position of each phrase is determined based on the selected topological field
from Step 3. If the phrase is (directly) dominated by a post-field, it is extraposed. Otherwise, it
is labeled as insitu. Embedded phrases from Step 1 are retained only if the topological field is
located between the phrase and its parent, as in example (51), i.e., the parent phrase (NP) dominates
the tokens of the field (NF), and the field (NF) dominates the tokens of the embedded phrase (PP).

(51) [NP den Mönchen, die jeden Tag meditieren [NF [PP hinter ihren Mauern]]]

The phrases in the example sentence would be labeled like this:
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Position of Relative Clauses

For relative clauses, the position depends not only on the topological field but also on the position
of the antecedent. If the RelC is adjacent to its antecedent, by definition, it cannot be extraposed
– even if both elements are located in the post-field. And if the RelC is adjacent to its antecedent,
but there could be an empty right sentence bracket between them, this should be recognized as an
ambiguous case. Consequently, the necessary steps for locating RelCs differ from those for phrases.

Step 1 Relative clauses are identified in the data with the Berkeley parser and one of the four
models, as described in Chapter 6.3. The result for a (shortened) example sentence from the Spoken
data set could look as follows (including the phrase analysis needed for antecedent identification):

‘I have already picked out a few hotels, which are located in the city center.

Step 2 A topological field analysis of the sentence is carried out with the Punct model from
Chapter 5 (cf. above). The analysis of the example sentence would be as follows:

Step 3 For each RelC, the corresponding topological field is selected as the lowest node in the
topological field tree that dominates all tokens of the clause (ignoring punctuation). In the example,
this would be the post-field NF:
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If no matching field is found, this likely indicates a boundary error, either for the RelC or the field.
In this case, the lowest node from the topological field tree that dominates the first token of the
RelC is identified (ignoring punctuation). Contrary to Step 3 for the (usually) non-complex phrases
above, here, this field corresponds to the left sentence bracket (LK), and its parent field (e.g., NF)
should in turn be the desired parent field of the relative clause.

Step 4 To distinguish between in-situ and ambiguous cases, the preceding topological field is
identified. If the field from Step 3 is a post-field, the preceding field is usually a right sentence
bracket or a middle field. In the example, it is the right bracket RK:

Step 5 Since the position of relative clauses eventually depends on the antecedent, the antecedent
of each RelC is identified as described in Section 7.1. In the example, this is the NP einige Hotels
(‘some hotels’) from Step 1:

Step 6 Based on the information from Steps 1–5, the position of RelCs can be determined.

(i) If the RelC is separated from its antecedent by one or more tokens (ignoring punctuation)
and/or the RelC is located in the post-field behind a right sentence bracket, it is labeled as
extrap. This is the case for the example:
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(ii) If the RelC is located in the post-field, adjacent to the antecedent in the middle field, with an
empty RK between them, the RelC is ambig.

(iii) Otherwise, if the RelC is adjacent to the antecedent and both are located in the post-field
(possibly behind a right sentence bracket) or in another field, the RelC is labeled as insitu.

(iv) Coordinated RelCs share their antecedent with a preceding RelC (cf. Section 7.1) and are as-
signed the same position as the left-most RelC. For example, the second RelC in example (51),
repeated from (44), is labeled as insitu, despite being separated from the antecedent by the
first RelC and the conjunction.

(51) vn̄ ſuͥlen vͥns ſchamē [Antec1+2 etlicher zimlich’ díngē] [RELC1-insitu duͥ nít verbottē ſínt]
/ vn̄ [RELC2-insitu dc mā wol tete].
‘And we should be ashamed of some decent things that are not forbidden and that one
would do.’

7.2.3. Evaluation and Results
After the position of the constituents has been determined as described in the previous section,
their labels (NP, RELC, etc.) and positions (insitu, extrap, ambig) are concatenated (e.g.,
NP-insitu or RELC-ambig). This enables a standard evaluation of labeled spans, as detailed
in Chapter 4. It also means that all extraposition candidates and all positions are included in the
same evaluation because confusions can occur between labels, positions, or both. Only sentences
with at least one candidate for extraposition are considered, and punctuation is ignored. Table 7.5
shows the results of fair evaluation.

For modern German, F1-scores range between 86% for the Modern data set to 92% on newspaper
language. On the historical data sets, the highest scores are reached with 83.5% on the HIPKON
data and 74% on the DTA. Errors mainly concern incorrect boundaries (cf. Figure 7.4). The high
proportion of FPs in the Tiger corpus compared to the other data sets originates from the fact that
only RelCs can be evaluated in this corpus, leading to a small number of only 84 errors in total.

However, while the overall results suggest high accuracy for the annotation of extraposition, this
is not entirely true. Table 7.6 shows fair F1-scores for each label, differentiated by position. For the
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News1 News2 Hist Mix
Corpus Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1

TüBa-D/Z 91.12 91.91 91.52 84.66 83.49 84.07 - - - - - -
Tiger 87.84 92.37 90.05 89.93 94.14 91.98 - - - - - -
Spoken 88.85 90.21 89.53 82.43 83.73 83.08 - - - - - -
Modern 86.09 86.56 86.32 84.54 83.61 84.07 - - - - - -
HIPKON 73.10 74.12 73.61 75.03 74.46 74.75 84.21 82.88 83.54 83.59 82.97 83.28
DTA 73.39 74.94 74.16 72.16 70.23 71.18 73.07 70.43 71.73 74.80 73.78 74.29

Table 7.5.: Overall precision, recall, and F1-scores (in percent) according to FairEval for the ex-
traposition analysis with different models on each data set. Models trained on historical data
are only applied to the historical test sets, and the highest scores for each corpus are highlighted
in bold. Traditional evaluation results can be found in Table A.12 in the appendix.

NP PP AP ADVP RELC
Corpus in situ extrap in situ extrap in situ extrap in situ extrap in situ ambig extrap
TüBa-D/Z 92.16 42.50 89.53 61.97 91.49 24.14 95.53 55.05 91.43 89.93 86.96
Tiger - - - - - - - - 95.24 92.01 88.10
Spoken 91.68 41.82 77.36 63.84 85.59 16.67 93.27 39.15 76.92 83.40 87.18
Modern 88.25 40.00 85.14 43.75 84.94 50.00 85.57 40.00 96.00 89.23 78.57
HIPKON 90.22 58.52 78.31 82.41 71.43 55.56 89.51 44.44 85.00 0.00 0.00
DTA 74.50 41.56 76.18 48.82 77.78 16.67 76.15 40.00 67.14 68.42 69.05

Table 7.6.: Overall F1-scores for each label and position (in percent) according to FairEval for
extraposition analysis with the best performing model on each data set.

phrases, it turns out that scores are high only for the (much more frequent) in situ variants, whereas
the (rare) cases of extraposition are recognized much less reliably. The highest scores are achieved
for extraposed PPs, with 43%–82%. For the other phrases, F1-scores are ≤58%. In general,
phrasal extraposition is recognized best in the HIPKON data set with its rather simple sentences
but high proportions of extraposition.

For relative clauses, the picture is less dismal. For most data sets, F1-scores are comparable
between the different positions. In situ RelCs are the most accurate group (except for the Spoken
data) with 67%–96%, followed by ambiguous and extraposed clauses. The latter group is identified
with F1-scores >78% in modern German and 69% in the DTA. The single extraposed RelC in the
HIPKON data is labeled as ambig, while ambiguous RelCs do not exist in the HIPKON sample.
In the other data sets, F1-scores lie between 68% and 92% for the ambiguous cases.

Figure 7.5 shows the confusion of labels and positions. For all data sets, a clear diagonal can
be observed, i.e., errors mainly concern incorrect boundaries (32%–68%). LBE and LE errors are
the second and third most frequent errors in most data sets. For extraposed elements, they result
especially from confusions of position (insitu instead of extrap), whereas the confusion of
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Figure 7.4.: Proportion of the different error types for extraposition analysis: false positives
(FP), labeling errors (LE), shorter, longer, and overlapping boundary errors (BEs, BEl, BEo),
labeling-boundary errors (LBE), and false negatives (FN). Numbers are shown for the best
model on each data set.

labels is more frequent for in situ phrases. Confusions of phrases with relative clauses or vice versa
are almost non-existent and might be only an artifact of the evaluation algorithm.77

The better results for RelCs compared to phrases can be explained by several factors. RelCs are
generally recognized with higher accuracy than phrases (cf. Chapter 6.3) due to their distinctive
structure. Also, identifying the position of RelCs depends less on the post-field, which is recog-
nized less reliably than other fields. Instead, the antecedent (and in particular its accurate right
boundary; cf. Section 7.1) plays a dominant role for RelC position. Also, post-fields with internal
structure, e.g., containing a relative clause, are generally recognized more reliably than post-fields

77Consider the discussion about error alignment in multi-level annotations in Chapter 4.
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without such an internal structure, e.g., containing only a single extraposed phrase (cf. Chapter 5).
Although definitive statements about error causes are difficult without a detailed qualitative analy-
sis, the low recall of uncomplex post-fields seems to be the main bottleneck for the recognition of
phrasal extraposition.

7.3. Corpus of Variants
The results from the previous section can be used for an automatic analysis of extraposition with
a corpus of variants. As explained in Section 7.1, the definition of extraposition entails that the
constituents are placed in the post-field instead of their base position in the middle field (or pre-field).
If the extraposed elements were moved back to the base position, this would allow to compare the
two positions and directly inspect possible reasons for and effects of extraposition. In our project,
we termed this approach the ‘corpus of variants’ method because moving the elements creates an
artificial variant of the sentence in which only specific linguistic aspects are manipulated while other
factors are kept constant.

In Ortmann et al. (2022), we applied the method to the order of direct and indirect objects in
the German middle field, comparing information profiles of the original sentences with variant
sentences with swapped objects. In this thesis, the variants would correspond to sentences in which
all extrapositions have been undone and the candidates for extraposition are placed in situ, like the
PP in example (52), repeated from (39).

(52)
Original: Das ist mir ganz klar geworden, [PP-extrap schon bei dieser kurzen Trennung].
Variant: Das ist mir [PP-insitu schon bei dieser kurzen Trennung] ganz klar geworden.
‘That has become very clear to me, even from this short separation.’

However, as discussed in Section 7.1, the base position can only be determined unambiguously
for attributive constituents like relative clauses. Creating a corpus of variants means moving these
constituents to their position adjacent to the antecedent. The implementation is straightforward.
Each extraposed RelC is placed behind the last token of its antecedent, as in example (53), repeated
from (43). If the RelC is preceded by punctuation or a conjunction, this material can be moved to
the left as well.78

(53)

Original: Es gehe dem ſelben menſchen / wie es [Antec den Steten] ergangen iſt /
[RELC-extrap die der HERR one barmhertzigkeit vmbgekert hat.]

Variant: Es gehe dem ſelben menſchen / wie es [Antec den Steten] /
[RELC-insitu die der HERR one barmhertzigkeit vmbgekert hat] ergangen iſt.

‘May that person be treated like the cities that the Lord converted without mercy.’

78Theoretically, a comma would have to be inserted after the re-located RelC, too. It has to be kept in mind that this
changes the number of tokens in the sentence, which might be relevant for subsequent analyses. Given the deviant
punctuation in historical texts, I ignore the issue here.
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Figure 7.5.: Confusion matrix for the identification of extraposition. Only errors are displayed, i.e.,
the diagonal displays boundary errors.
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For coordinated RelCs, the linear order of elements should be preserved, and embedded antecedents
are moved together with the dominating clause (and, in turn, their relative clause), as in example (54)
from the DTA.

(54)

Original: Vorausschicken müssen wir hiebei daß wir [Antec1 zu denjenigen Elsäßern]
gehören [RELC-extrap1 die sich von Herzen darüber freuen daß Elsaß nun
wiederum zu seiner ursprünglichen Stammesart zurückkehrt und [Antec2 seinen
deutschen Charakter] wieder gewinnen soll, [RELC-extrap2 welchen es sich
durch eine mehr denn zweihundertjährige französische Herrschaft hindurch
großentheils zu wahren gewußt hat]].

Variant: Vorausschicken müssen wir hiebei daß wir [Antec1 zu denjenigen Elsäßern]
[RELC-insitu1 die sich von Herzen darüber freuen daß Elsaß nun wiederum
zu seiner ursprünglichen Stammesart zurückkehrt und [Antec2 seinen deutschen
Charakter], [RELC-insitu2 welchen es sich durch eine mehr denn zweihun-
dertjährige französische Herrschaft hindurch großentheils zu wahren gewußt
hat]] wieder gewinnen soll gehören.

‘We must say in advance that we are among those Alsatians who are heartily pleased that
Alsace is now returning to its origins and is to regain its German character, which it has largely
managed to preserve through more than two hundred years of French rule.’

In principle, one could also think of creating a corresponding extraposed variant for in situ con-
stituents by artificially moving them to the post-field. This is more difficult than the opposite di-
rection, though. First, the set of constituents would have to be restricted to elements that can be
extraposed (e.g., no pronouns, Zifonun et al. 1997) and that are placed in the middle field to pre-
vent accidentally causing an empty pre-field in V2 clauses. Also, the original sentences must have
an explicit right bracket to enable unambiguous extraposition. But, at the same time, the post-field
of the original sentence should still be empty. Although it is possible to place several constituents
in the post-field, this is uncommon (at least in modern German) and would require establishing
a valid order of post-field elements in the variant sentence (Zifonun et al. 1997). And even if all
of those conditions were met, it would still be difficult to ensure that only plausible variants are
created. Arbitrarily moving constituents from the middle field to the post-field will likely generate
many invalid variant sentences because various factors influence whether or not a constituent is
extraposed (cf. Chapter 2.2). Since only realistic variants should be used for a meaningful analysis,
the problematic variant sentences would have to be filtered out, e.g., with acceptability ratings –
which likely depend on the context and are generally not available for historical data. As a conse-
quence, only the uncontroversial variants of extraposed attributive relative clauses will be created
and used in the example application in Chapter 8.
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7.4. Discussion
In this chapter, the automatic identification of extraposition was explored. Using the different
syntactic analyses from the previous chapters, candidates for extraposition were identified in mod-
ern and historical data sets via constituency parsing, and their position within the topological field
analysis was determined as in situ or extraposed (or ambiguous, for relative clauses).

The results show that in situ phrases are recognized with high accuracy, whereas the identification
of extraposed phrases is not reliable yet. The highest F1-scores are achieved for extraposed PPs,
with 43%–82%. For relative clauses, the differences between in situ, ambiguous, and extraposed
instances are much less pronounced. In modern German, they can be identified with F1-scores of
77% to 96%. For historical German, results range from 67% to 85%.

The observed differences between phrases and clauses were traced back to (i) the distinctive
structure of RelCs that helps with their identification and (ii) the relevance of the post-field for
determining the element’s position. As Chapter 5 has shown, post-fields are among the less reliably
identified topological fields. And while extraposed phrases can only be recognized with an (at
least partly) correct identification of post-fields, identifying the antecedent and especially its right
boundary is more relevant to determine the position of RelCs.

As the evaluation in Section 7.1 has demonstrated, simple heuristics are sufficient to identify
antecedents and, thus, the base position of attributive relative clauses, given the annotations from
Chapter 6. In Section 7.3, this information was exploited to create a corpus of variants in which
extraposed RelCs are artificially ‘moved back’ to their base position. Such a variant corpus can be
used to compare sentences with and without extraposition, e.g., regarding their information profile
(cf. Chapter 2.2.3).

Overall, the results from this chapter have shown what is and is not (yet) possible with the de-
veloped methods concerning the automatic identification of extraposition. For phrases, which are
only rarely extraposed in modern standard German but also in other language registers, spoken, and
historical data, the automatic recognition is not very reliable yet. Before the automatic results are
used for quantitative analyses, further improvements should be made. Potential steps could include,
but are not limited to:

• Normalize the historical data and experiment with word-based (neural) models for topological
field analysis and constituency parsing.

• Create historical training data and train a topological field model specifically for historical Ger-
man that can analyze the complex sentence structures of Early New High German.

• Create an annotated data set of non-standard language with relevant proportions of post-fields
and/or use active learning (e.g., Tang et al. 2002) to improve the recognition of (uncomplex)
post-fields.

• Improve constituency parsing for non-standard language in general.
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For relative clauses, the results seem robust enough for first quantitative studies even though further
improvements could be achieved with the steps listed above – perhaps complemented with exper-
iments on dependency parsing for an optimized recognition of non-adjacent antecedents. In the
example application in the next chapter, I will focus solely on the automatically identified RelCs,
leaving the analysis of extraposed phrases for future work.
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Example Application

In this thesis, computational methods for the automatic analysis of extraposition were developed.
In this chapter, the methods are exemplarily applied to modern and historical German to explore
the effects of different factors on the extraposition of relative clauses. I will focus on four factors
that presumably influence whether or not a relative clause is placed in the post-field: time, length,
orality, and information density (cf. Chapter 2).

The goal of this chapter is not only to shed light on the causes of extraposition, though. Primar-
ily, the intention is to demonstrate the usefulness of the developed methods for linguistic studies,
particularly but not only for historical language. With manual annotation, the bottleneck of such
studies will always be a lack of annotated data, simply due to natural timely and financial limits of
human annotation. With the application of computational methods, these limits are significantly
reduced (in the case of semi-automatic approaches) or removed entirely (for purely automatic ap-
proaches). Once the necessary tools and models are created, theoretical linguistic assumptions and
qualitative observations can be tested quantitatively against almost arbitrarily large amounts of data
to arrive at statistically significant conclusions without additional manual labor.

The analyses in this chapter are based on large data sets of modern and historical German from
various registers. The data sets are briefly introduced in Section 8.1, and their automatic annotation
and the creation of language models are described in Section 8.2. Section 8.3 presents the results
of the quantitative analysis for each of the four factors: time (Section 8.3.1), length (Section 8.3.2),
orality (Section 8.3.3), and information density (Section 8.3.4). The chapter concludes with a short
discussion of the findings in Section 8.4.

8.1. Data
A quantitative exploration of the influence of different factors on the diachronic development of ex-
traposition requires large corpora of modern and historical German. My data selection was guided
by four main criteria:
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Time period The data sets should cover the whole relevant time period, i.e., from Early New
High German, when the sentence brackets were finally established, to present-day German. In
the following, I organize the texts into two groups. All texts from 1900 or later are considered
as ‘modern’, whereas older data counts as ‘historical’. From a linguistic perspective and especially
from a syntactic point of view, this boundary is rather arbitrary since texts from the early New
High German period are already very similar to present-day German. However, a standardized
German orthography only really emerged after the second orthographical conference in 1901 (Augst
et al. 1997). So the historical data shows a higher degree of word form variation, which likely
affects the accuracy of automatic annotations and the perplexity of language models. Data sets
with orthographical normalizations and manually created annotations should generally be preferred
for historical German.
Register Extraposition is usually considered a characteristic of oral language (cf. Chapter 2.2.2).
To quantitatively test this claim, the selected data sets should cover different genres and registers
with varying degrees of orality, ranging from very literate styles (e.g., in news or science) to oral-
like data (e.g., in plays, subtitles, or transcripts). Of course, not every register is equally available
for each time window. For example, data from the news or spoken registers is sparse for earlier time
periods. Also, the orality (and other characteristics) of a register may change over time, as shown
by Degaetano-Ortlieb et al. (2019) for scientific English. Including a multitude of genres will ensure
that different degrees of orality are captured. Combined with a text-wise orality measure (Ortmann
and Dipper forthcoming), this will shed light on the relationship between orality and extraposition,
also beyond registers.
Annotations While the first two selection criteria concern the broader metadata, the other two
criteria are related to the data itself. Firstly, the application of the developed annotation methods
requires the availability of POS tags, in particular STTS tags (Schiller et al. 1999). Modern data
can be tagged automatically with high accuracy (Ortmann et al. 2019), but this is problematic for
the (unstandardized) historical data (see the discussion about orthography above), for which pre-
trained models do not exist. Therefore, I only include historical data sets that are already provided
with POS tags, which can automatically be mapped to STTS tags if necessary.
Corpus size Finally, quantitative analyses require sufficient amounts of data for meaningful re-
sults. A corpus size of >100k tokens or >500 relative clauses is desirable. The creation of language
models (Section 8.2) also requires enough training data for low Out-of-Vocabulary (OOV) rates.
That excludes the historical gold data sets from the previous chapters.

Based on the given criteria, I selected 25 data sets, which cover a variety of registers for the time
from 1300 to 2018. All data sets provide STTS POS tags with sensible accuracy. And except for
two of the historical data sets, they also offer enough data to train language models. Section 8.1.1
presents the modern data sets, some of which have already been used in the previous chapters.
Section 8.1.2 introduces the historical data sets. An overview of all 25 data sets can be found in
Table 8.1.
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Corpus Time Genre(s) #Docs #Sents #Toks #Words
Modern
GutenbergFiction 1900–2012 Fiction, Narrative,

Novelette
461 1,580,416 30,247,279 25,133,955

GutenbergFolk-Tales 1906–2012 Fable, Fairy, Legend 200 141,985 3,513,608 2,981,885
GutenbergNon-Fiction 1900–2009 Report, Tractate 178 612,011 15,292,839 13,118,570
GutenbergSpeech 1903–1976 Lecture, Speech 16 15,923 446,713 388,222
OPUSAction 1957–2015 Action, Adventure 101 128,961 800,451 601,714
OPUSComedy 1931–2015 Comedy 317 481,291 2,972,874 2,224,350
OPUSDrama 1921–2016 Drama 298 331,779 2,127,887 1,619,349
SdeWaC 2006 Web 200 20,000 1,175,532 1,051,338
SermonOnline 2018 Sermon 506 86,316 1,493,357 1,257,161
Tiger 1992–1997 News 200 4,572 78,166 67,813
TüBa-D/S 2000 Spoken 14 28,696 296,942 239,897
TüBa-D/W 2014 Encyclopedia 3 28,351 476,387 409,134
TüBa-D/Z 1989–1999 News 364 10,527 196,761 167,915

Historical
Anselm 1300–1500 Religion 61 11,116 406,263 392,532
DTAScience 1620–1895 Medicine, Theology 24 13,480 618,565 536,553
GerManCDRAM 1657–1798 Drama 45 9,841 116,217 95,496
GerManCHUMA 1654–1798 Humanities 45 4,512 109,658 93,894
GerManCLEGA 1654–1796 Legal 45 3,594 109,050 93,108
GerManCNARR 1658–1797 Narrative 45 4,492 109,186 93,719
GerManCNEWS 1659–1798 News 66 3,943 113,599 98,519
GerManCSCIE 1663–1799 Science 45 3,995 108,810 93,325
GerManCSERM 1654–1798 Sermon 45 5,200 107,743 91,916
KaJuK 1625–1889 Autobiography,

Chronicle, Diary,
Letter, Philosophy

8 2,750 119,838 105,274

ReF.RUB 1350–1605 Chronicle,
Devotionals, Fiction,
Non-Fiction, Science

39 4,309 142,822 128,754

RIDGES 1482–1652 Herbology 23 4,828 80,555 69,201

Table 8.1.: Overview of the modern and historical data sets for the example analysis. For each
data set, the covered time periods, genres, and basic statistics are given. #Words refers to the
number of tokens without punctuation.
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8.1.1. Modern Data Sets
For modern written German, i.e., texts produced after 1900, an ever-increasing amount of data
is available. Still, the temporal distribution and the diversity of registers are limited. Linguistic
studies often default to using large newspaper and web corpora from the last decades. Expanding
to other data sources can be hindered by copyright or license issues and the availability of curated
data sets. In the example analysis, I use standard data sets with protective licenses like the TüBa
corpora as well as freely available and less commonly used data sets like modern sermons that must
be pre-processed first. The following modern data sets are included:

Gutenberg The Gutenberg project is an online library with over 60k free digital, mostly English
books.79 The German version Projekt Gutenberg-DE offers copyright-free German literature. For
this thesis, I use Edition 14,80 which contains over 8,000 texts by more than 1,700 authors. For the
analysis in this chapter, I selected four different subsets of genres:

GutenbergFiction GutenbergFolk-Tales GutenbergNon-Fiction GutenbergSpeech
Fiction, narrative, Fable, fairy, legend Report, tractate Lecture, speech
novelette

Only texts from one of the given genres with a publication date after 1900 are included. In case of
conflicting meta information, a semi-automatic check was conducted to filter out texts with a clearly
historical orthography, e.g., vnd instead of und ‘and’ or seyn instead of sein ‘be’. Also, foreign
language texts and dialectal texts were semi-automatically excluded. For the fiction and non-fiction
samples, only one text per author is retained in the data set to reduce the effect of personal stylistic
preferences. However, due to inconsistencies in the metadata, there may still be more than one text
per author in some cases, e.g., if there are different spellings of the author’s name.

The Gutenberg corpus is provided as HTML files, which were automatically parsed to extract
the text content.81 Title pages and tables of contents are not included in the output. Sentence
and word tokenization were performed with the standard tokenizers from the NLTK,82 combined
with a list of abbreviations and additional heuristics. Earlier experiments showed F1-scores >95%
for sentence segmentation and >99% for word tokenization. In total, the genre subsets comprise
between 400k and 30M tokens. STTS POS tags were added automatically with the spaCy tagger.83

Based on previous evaluations, tagging accuracy can be expected to lie above 94%.

79https://www.gutenberg.org/
80The corpus as of June 2016 was purchased at https://gutenberg.abc.de/.
81Pre-processing of the Gutenberg, OPUS, and SermonOnline corpora was done in the context of my Master thesis and

our paper Ortmann et al. (2019), and the resulting data sets are reused here.
82https://www.nltk.org/
83https://spacy.io/; German transformer model de_dep_news_trf-3.2.0
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OPUS The OpenSubtitles corpus (short: OPUS; Lison and Tiedemann 2016) is a large collection
of parallel movie subtitles from the OpenSubtitles database.84 The monolingual German version of
201885 contains over 46k subtitles, from which I selected three genre subsets:

OPUSAction OPUSComedy OPUSDrama
Action, adventure Comedy Drama

Based on the available metadata, I only included one subtitle per movie and only original German
movies because translations will likely affect sentence structure (among other things). The corpus
is provided with sentence boundaries and was tokenized and tagged as described for the Gutenberg
corpus above. In total, the subsets contain between 800k and about 3M tokens.

SdeWaC The SdeWaC corpus (short for Stuttgart deWaC; Faaß and Eckart 2013)86 is a large col-
lection of German web pages with more than 800M tokens. The corpus is provided with automatic
sentence and word tokenization and STTS POS tags, as well as further annotations like lemmas
and syntactic dependencies. I use the first 20k sentences from the data set and re-tag them with
the spaCy tagger (see above) because tagger accuracy will likely have improved since the release
of the corpus. Since no meta information about the individual web pages is provided, I consider
the publication year of the original deWaC corpus (2006) as the date of origin. In total, the data
subset contains about 1M tokens.

SermonOnline While religious texts were a common register in historical time periods, nowa-
days, the genre is much less common. To allow for diachronic comparisons, I use German sermons
from the SermonOnline database, which provides free Christian sermons in various languages.87

The texts were automatically sentence segmented, tokenized, and tagged as described above. In
total, the data set comprises about 1.5M tokens. It has to be mentioned that the 506 texts were writ-
ten by only 18 different authors who contributed between 1 and 292 sermons. Since no additional
meta information is provided, I use the year in which the data was crawled (2018) as the date of
origin.

Tiger The Tiger corpus was already used as training and test data in the previous chapters. Here,
I use the test section with 200 newspaper articles for the example analyses and the training section
to train the language models. For more information on the corpus, see Chapter 3.

84http://www.opensubtitles.org
85http://opus.nlpl.eu/download.php?f=OpenSubtitles/v2018/raw/de.zip
86https://www.ims.uni-stuttgart.de/forschung/ressourcen/korpora/sdewac
87The texts were automatically crawled in August 2018 from http://www.sermon-online.de.
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TüBa-D/S The TüBa-D/S corpus is included as a representation of modern spoken German and
was already used in the previous chapters. For more information on the corpus, see Chapter 3. I
consider the publication year (2000) as the date of origin, even though the conversations were likely
recorded a few years earlier.

TüBa-D/W The TüBa-D/W corpus includes automatically annotated articles from the German
Wikipedia of 2014 (De Kok 2014).88 The data is provided with automatically created sentence
segmentation, tokenization, and STTS tagging. For the example analyses, I use the first three files
with approximately 28k sentences and about 475k tokens. For language model creation, I also
added the next eight files as training data. The corpus is licensed under CC BY-SA 3.0.

TüBa-D/Z The TüBa-D/Z corpus was already used as training and test data in the previous chap-
ters. Here, I use the test section with 364 newspaper articles for the example analyses and the
training section to train the language models. For more information on the corpus, see Chapter 3.

8.1.2. Historical Data Sets
The availability of historical data sets is much more restricted than for modern German. Especially
for earlier time periods, written sources are sparse, and careful manual curation is necessary be-
fore the data can be analyzed automatically with computational methods. After the invention of the
printing press in the 15th century, the amount of written (German) language has been steadily in-
creasing. And this process was accelerated even more with the digital revolution. At the same time,
the variety of registers increased significantly. Early writings often treat religious topics, whereas
other registers like science or news only emerged over time.

Besides the skewed distribution of registers, a look at available data sets of historical German also
shows that many do not meet my other selection criteria. Either they do not provide POS tags (e.g.,
Bonner Frühneuhochdeutschkorpus (Fisseni 2017), Mannheimer Korpus Historischer Zeitungen
und Zeitschriften (IDS 2013), Kasseler Junktionskorpus (Ágel and Hennig 2008), Wikisource,89

Gutenberg90), or the available POS tags have low accuracy, especially for older texts (e.g., DTA;
BBAW 2021). Due to the manual effort that is required to create a historical corpus, a lot of the data
sets are also too small for a quantitative analysis or to train language models on them (e.g., HIPKON
(Coniglio et al. 2014), Fürstinnenkorrespondenzen (Lühr et al. 2013), Mercurius (Demske 2005),
RIDGES (Lüdeling et al. 2022)).

Since POS tags are the only indispensable requirement for my analysis, I only considered data
sets with sensible POS tagging and selected the ones that meet as many of the other criteria as
possible. The following historical data sets are included in the example analysis:

88http://www.sfs.uni-tuebingen.de/ascl/ressourcen/corpora/tueba-dw.html
89https://de.wikisource.org/
90https://gutenberg.abc.de/
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Anselm The Anselm corpus (Dipper and Schultz-Balluff 2013) contains writings from the 14th

to 16th century in Early New High German, Middle Low German, and Middle Dutch. The 61
German texts that are used in this thesis deal with the religious treatise of Anselm of Canterbury
asking questions to Mary about the Passion of Jesus (Interrogatio Sancti Anselmi de Passione Domini,
‘Questions by Saint Anselm about the Lord’s Passion’). The corpus is provided with normalizations,
lemmas, morphology, and custom POS tags, which were mapped to the modern STTS tagset.91

Annotations and language models in this chapter are based on the provided modernized word forms.
In total, the data set contains about 400k tokens. It is licensed under CC BY-SA 4.0.

DTAScience As mentioned in Chapter 3, the German Text Archive (BBAW 2021) provides large
amounts of automatically annotated texts from the 16th to the early 20th century, including various
genres. In the previous chapters, I used a small subset from this corpus that was manually anno-
tated for evaluation purposes. However, for the quantitative analyses in this chapter, more data is
necessary. Since the automatic POS annotations are too unreliable (cf. Chapters 3, 5), I chose a
subset of 24 texts (11 medical, 13 theological texts; 17th–20th century) that were used in our project
to investigate extraposition.92 At the time of the analyses, manually corrected POS tags were avail-
able for the oldest 19 texts. The annotations and models in this chapter are based on the provided
orthographic normalizations. Only sentences that are relevant to the project (i.e., containing some
candidate for extraposition) are included. In total, the sample comprises about 618k tokens. The
DTA is licensed under CC BY-SA 4.0.

GerManC The GerManC data set (Bennett et al. 2007) is a representative corpus of German
between 1650 – 1800, intended for comparative diachronic studies of grammar and vocabulary
in German and English. It contains texts from seven different registers, which I treat as separate
subcorpora for the example analysis:

GerManCDRAM GerManCHUMA GerManCLEGA GerManCNARR
Plays Humanities Legal texts Narratives

GerManCNEWS GerManCSCIE GerManCSERM
News Science Sermons

The corpus is provided with custom POS tags, lemmas, morphology, dependency annotation, and
normalization. POS tags are automatically mapped to the STTS tagset.93 In total, the data set
contains over 700k tokens (about 100k per register) and is licensed under CC BY-NC-SA 3.0 DE.

91The following POS tags were mapped to STTS tags: ADJN → ADJD, ADVREL → ADV, PDS_PRELS → PRELS,
PPOSN → PPOSAT, PRELF → PRELS, PTKVZ_APPR → PTKVZ

92https://github.com/rubcompling/C6Samples
93The following POS tags were mapped to STTS tags: NA → NN, PROAV → PAV, PAVREL → PAV,

PWAVREL → PWAV, PWREL → PWS, SENT → $., $- → $., $’ → $(, $) → $(, _ → $(
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KaJuK The Kasseler Junktionskorpus (short: KaJuK; Ágel and Hennig 2008) was compiled for
the investigation of conceptual orality. It contains 6 conceptually oral and 2 conceptually literate
texts from the 17th and 19th century. The data is manually enriched with detailed information for
the orality analysis but originally lacks basic annotations like POS tags. For our latest study on
orality, we automatically annotated the corpus with POS tags using the spaCy tagger and some
basic normalization (estimated tagging accuracy is about 88%; Ortmann and Dipper forthcoming).
With about 120k tokens, the corpus is relatively small. It is licensed under CC BY 3.0.

ReF.RUB The Reference Corpus of Early New High German (Wegera et al. 2021) is a represen-
tative, balanced data set of German from 1350 – 1650. The syntactically annotated part (ReF.UP)
was already used in Chapter 6 to train and evaluate chunking and constituency parsing. Here, I
selected the larger ReF.RUB subcorpus,94 which is annotated with POS tags, lemmas, and mor-
phology. For the analyses, I use only the manually annotated part of the data set (about 142k
tokens), whereas the complete subcorpus (>1.2M tokens) is used for language model creation. The
HiTS POS tags (Dipper et al. 2013) were mapped to STTS tags following the rules in Table A.4
(in the appendix). The corpus does not include normalization, but the modern tokenization and
simplified word forms with only ASCII characters already reduce some variation. ReF is licensed
under CC BY-SA 4.0.

RIDGES Herbology The final data set stems from the RIDGES project (Register in Diachronic
German Science) and contains 23 scientific texts from the mid 15th to the 20th century (Lüde-
ling et al. 2022). The corpus is provided with POS tags, lemmas, morphology, and dependency
annotations. With about 80k tokens, the corpus is relatively small. It is licensed under CC BY 3.0.

8.2. Annotation
For the example analysis in this chapter, the data sets from the previous section are automatically
enriched with the necessary annotations. Section 8.2.1 describes the automatic identification of
relative clauses and extraposition. In Section 8.2.2, the calculation of conceptual orality is explained.
Finally, Section 8.2.3 describes the creation of language models and surprisal calculation for an
information-theoretic analysis of the data.

8.2.1. Extraposition
To investigate the post-field placement of relative clauses, the 25 modern and historical data sets are
automatically annotated with topological fields, relative clauses, and extraposition with the methods
developed in this thesis. For the modern data, the Punct and News1 models are used because
they performed best across different modern registers. The only exception are the three corpora
94There is some overlap between the different subcorpora of ReF. In particular, seven texts from the ReF.RUB data set

are also part of the ReF.UP subcorpus, five of which are provided with manual annotations.
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Tiger, TüBa-D/S, and TüBa-D/Z, for which I already have gold annotations from Chapter 7 that
are reused here.

The historical data sets are annotated with the Punct and Mix models, using the orthographic
normalization if possible.95 Since the Mix model is trained on modern and historical German, it
will likely achieve the best results across the entire historical time period from 1300 to 1900. Only
for the ReF.RUB data, I decided to use the Hist model instead because no modernized word
forms are available and the data is highly similar to the model’s training data, which was mostly
taken from ReF.UP, another sub-corpus of ReF (cf. Chapter 6). Only sentences with a maximum
of 350 tokens are annotated.

Table 8.2 shows the number of automatically identified relative clauses in each of the data sets,
ranging from 330 to 278k RelCs. In total, 563k relative clauses with their antecedents have been
identified and located within the topological field structure. These numbers are, obviously, unthink-
able for manual annotation, underlining the power of computational methods and their usefulness
for linguistic analyses. Instead of spending years on expensive and effortful manual work, complete
movies or books can now be annotated with topological fields, a constituency analysis, and RelC
extraposition in minutes.96

The identified relative clauses are assigned to the date of their source text (Table 8.1) for an
inspection of the diachronic development of extraposition (Section 8.3.1). Also, for each RelC, the
number of included words is retrieved to explore length as a factor for extraposition (Section 8.3.2).
While the automatic annotations are always created for complete sentences (including punctuation),
the example analyses will only consider words, i.e., tokens without punctuation (for a discussion on
measures of length vs. complexity, see Chapter 2.2.1).

8.2.2. Orality Score
As explained in Chapter 2, extraposition is considered mainly an oral phenomenon. However, the
term ‘orality’ is often used rather vaguely. Based on our previous work (Ortmann and Dipper 2019;
Ortmann and Dipper 2020; Ortmann and Dipper forthcoming), I aim at an objective investigation
of the relationship between orality and extraposition. The degree of orality is operationalized in
two ways.

95As mentioned in Chapter 6.2, the parser models are essentially unlexicalized. However, the constituency model can
still fall back on the word forms if no parse is found for the given POS sequence. Supplying normalized word forms
will likely improve the result in these cases. Normalization becomes more relevant in the context of language model
creation (Section 8.2.3).

96Annotation speed depends on several factors, including the length and complexity of sentences, the selected models,
and the available hardware. Most of the required time is consumed by the topological field annotation and constituency
analysis with the Java-based parser. Better computational efficiency may be achieved with another (faster) parser.
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Corpus
#RelC

insitu ambig extrap all
Modern
GutenbergFiction 106,871 94,322 77,690 278,883
GutenbergFolk-Tales 9,907 10,457 8,407 28,771
GutenbergNon-Fiction 74,682 54,609 49,042 178,333
GutenbergSpeech 2,466 1,497 1,914 5,877
OPUSAction 568 620 320 1,508
OPUSComedy 1,784 2,048 972 4,804
OPUSDrama 1,656 1,812 1,032 4,501
SdeWaC 6,310 3,668 6,143 16,121
SermonOnline 5,831 5,458 3,949 15,238
Tiger 205 176 175 556
TüBa-D/S 100 142 88 330
TüBa-D/W 750 1,441 680 2,871
TüBa-D/Z 658 550 397 1,605

Historical
Anselm 452 560 253 1,265
DTAScience 5,454 3,274 3,683 12,411
GerManCDRAM 292 168 235 695
GerManCHUMA 605 299 469 1,373
GerManCLEGA 579 127 313 1,019
GerManCNARR 485 343 557 1,385
GerManCNEWS 552 187 493 1,232
GerManCSCIE 641 245 471 1,357
GerManCSERM 567 341 426 1,334
KaJuK 219 220 202 641
ReF.RUB 443 318 281 1,042
RIDGES 202 89 134 425
Total 222,279 182,972 158,326 563,577

Table 8.2.: Number of automatically identified relative clauses by position (insitu, ambig,
extrap) and overall in the modern and historical data sets.
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Figure 8.1.: Mapping of data sets to registers. The ReF.RUB corpus includes texts from more than
one register (Fiction, Non-Fiction, Religion, and Science).

Firstly, each data set is mapped to one of six registers: News, Science, Non-Fiction, Fiction, Reli-
gion, and Spoken. The order of registers corresponds to their (diachronically) expected degree of
orality from most literate (News) to most oral (Spoken). I only expect small differences between
the news and science texts, with the latter becoming less oral over time, as shown by Degaetano-
Ortlieb et al. (2019) for scientific English. Fiction texts are usually more oral than non-fiction but
significantly less oral than actual spoken language. Religious texts are traditionally intended for
spoken reproduction (e.g., sermons are usually meant to be read aloud), so I expect similarities
with the spoken register.

For my analyses, the News register includes newspaper articles from one historical and two mod-
ern corpora. Science texts are only available for historical German from four different data sets.
The Non-Fiction register comprises a variety of different genres (four historical, and three modern
data sets). The Fiction register includes narrations from two modern and two historical data sets.
In the Religion register, data from three historical corpora and modern sermons are available. The
Spoken set consists of speech transcripts for modern German and spoken-like data from subtitles,
written speeches, and historical plays. Figure 8.1 illustrates the mapping of data sets to registers.

As we have shown in Ortmann and Dipper (2019) and Ortmann and Dipper (2020), the catego-
rization into registers is a useful approximation of the general orality of a given text type. However,
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as described in Chapter 2.2.2, orality can only be sensibly determined for individual texts. So,
in addition to the register mapping, each text is rated with our orality score (Ortmann and Dip-
per forthcoming) using the COAST implementation.97 As explained in Chapter 2.2.2, the score is
based on the linguistic features of individual texts and allows to objectively compare the degree of
orality for large amounts of data. An overview of the features was given in Table 2.1. For easy
reference, the features included in the orality score are repeated here with their respective weights
and definitions:

mean_word -0.819 Mean word length.
subord -0.314 Ratio of subordinating conjunctions (tagged as KOUS or KOUI) to

full verbs.
V:N 0.528 Ratio of full verbs to nouns.
PRON1st 0.717 Ratio of 1st person pronouns with lemmas ich ‘I’ and wir ‘we’ to all

words.
DEM 0.060 Ratio of demonstrative pronouns (tagged as PDS) to all words.
DEMshort 0.365 Proportion of demonstrative pronouns (tagged as PDS) with lem-

mas diese or die ‘this/these’, which are realized as the short form
(lemma die).

PTC 0.104 Proportion of answer particles (ja ‘yes’, nein ‘no’, bitte ‘please’,
danke ‘thanks’) to all words.

INTERJ 0.276 Proportion of primary, i.e., one-word interjections (e.g., ach, oh,
o, bravo, halleluja, hmm) to all words.

As can be seen from the definitions, the features are based on word forms, STTS POS tags, and
lemmas. Since the lemma-based features explicitly distinguish between specific lemmas, e.g., die
vs. diese, the data must contain precisely these lemmas to obtain correct results. For data sets
that are provided with a similar but slightly different lemma annotation, the relevant lemmas are
mapped to the target lemmas. For example, short demonstrative pronouns are lemmatized as der
in the ReF.RUB data and d- in the Anselm data, which are mapped to die for the orality analysis.
If the lemma analysis of a data set is entirely different (RIDGES, SdeWaC, Tiger) or if no lemma-
tization is available at all (Gutenberg, KaJuK, OPUS, SermonOnline, TüBa-D/S), the necessary
lemmas are determined based on word forms using the simple rules described in Ortmann and
Dipper (forthcoming).

Given the required annotations, the features are then determined for each of the 25 data sets. As
explained in Chapter 2.2.2, the features can take on very different values (e.g., an average word
length of 5 letters vs. a proportion of interjections of 0.1%), so values are scaled with a linear trans-
formation to the area between 0 and 1. Since the scaling is based on the minimum and maximum
feature values in the data set, the orality score is a relative measure, and scores are only comparable
within one data set. To compare texts from different corpora, the results of all texts must be scaled
in the same way, i.e., first, the 25 data sets are joined and then scaled to a common space based on

97https://github.com/rubcompling/COAST
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Figure 8.2.: Distribution of orality scores within the six registers (from left to right): News, Sci-
ence, Non-Fiction, Fiction, Religion, and Spoken. Scores range from -0.9 to 1.3, with lower
scores indicating a more literate and higher scores a more oral style.

the minimum and maximum feature values across all data sets. This way, the orality score of a reli-
gious text from, e.g., the Anselm data, is comparable to the score of a sermon in the SermonOnline
data.

Figure 8.2 shows the distribution of orality scores in the six different registers. The expected
differences in the general orality of registers are clearly visible in the plot and also confirmed by a
one-way ANOVA on a stratified sample of 75 texts per register with a large main effect of register
(F (5, 444) = 285.8, p < 0.001, η2 = 0.76).98 A post hoc pairwise comparison with Tukey’s
HSD test returns significant differences between all registers except Science and Non-Fiction. Still,
the plot also shows the variability within registers with standard deviations between s = 0.15 and

98I use a stratified sample instead of all data points to reduce the influence of large sample size on the statistical results
(see also the discussion in Sections 8.3.2 and 8.3.3). All statistical tests in this chapter are performed with the R
software (R Core Team 2018), and the car and lsr packages.
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s = 0.23. A large part of this variation can be attributed to differences between the included data
sets, e.g., between transcripts of spoken language with a score greater than 1 and written speeches
with scores below 0.25. Or between historical news with scores around -0.2 and modern news with
scores below -0.36. In general, grouping texts into registers is a good, practical operationalization
of orality, but more precise, nuanced judgments are possible with the orality score.

8.2.3. Language Models and Surprisal
The exploration of information-theoretic measures as a factor for extraposition (Section 8.3.4) re-
quires the creation of probabilistic language models (LMs). As explained in Chapter 2.2.3, such
language models are used to predict how probable or, in other words, how surprising a word is in
a given context. For meaningful predictions, a language model should be trained on data that is
similar to the data it should predict. A model that is trained on newspaper text will make realistic
predictions regarding the probability of words in other newspaper text, but will be very surprised
when confronted, e.g., with spoken language transcripts. Similarly, a model trained on modern data
will be surprised by historical data. As demonstrated by Bizzoni et al. (2020) or Degaetano-Ortlieb
et al. (2021), this effect can be exploited for the investigation of language change and differences
between registers. However, the influence of information density on extraposition, i.e., the syn-
chronic choice between extraposing the relative clause or leaving it in situ, can only be explored
with good fitting LMs for specific registers and time periods.

Therefore, I trained separate language models for each of the data sets. Since the limited training
data, especially for historical language and non-standard registers, leads to data sparsity problems
for n-grams with values of n > 2, I use classical bigram LMs with Jeffreys-Perks smoothing
(λ = 0.5; Jeffreys 1946) for the example analysis. Models are trained on (normalized) word forms
representing the lexical level and STTS POS tags representing the syntactic level. Punctuation is
ignored during training and surprisal calculation.

Contrary to the other analyses, I focus only on the difference between extraposed and in situRelCs
here, ignoring the ambiguous cases. As test data, I randomly select 250 sentences with at least one
extraposed and 250 sentences with at least one in situ RelC per data set. If a data set contains less
than 250 extraposed RelCs, the amount of in situ RelCs is also limited to approximately the same
number. However, as one sentence can include both types of RelCs, the total number of RelCs may
vary slightly.

The remaining sentences from the data sets are used as training data for the language models.
This approach ensures a good fit of the models to the test data without including the test data in the
training procedure. Since only a subset of relative clauses is held out for the analysis, the training
data still contains enough RelCs for a representative LM. If a data set was deemed too small to
serve as its own training data, I included additional similar data, e.g., other scientific texts from
the DTA for DTAScience or the training sets of the Tiger and TüBa-D/Z corpora. Table 8.3 gives an
overview of which data is used to train which model. For two of the historical data sets, KaJuK and
RIDGES, there is not enough training data available, so they are not included in the information-
theoretic analyses.
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Language Model #Words #Types Training Data
Modern
Gutenberg 41,547,796 811,576 Texts from the genres fiction, narrative, novelette,

fable, fairy, legend, report, tractate, lecture, speech
OPUS 4,425,747 147,544 German subtitles from the genres action, adventure,

comedy, and drama
SdeWaC 1,024,900 111,787 First 200k sentences of SdeWaC
SermonOnline 1,244,247 55,496 All German sermons from SermonOnline
Tiger 689,141 83,685 Train and test section of the Tiger corpus
TüBa-D/S 236,160 6,368 Complete TüBa-D/S corpus
TüBa-D/W 1,475,327 161,205 Files 0–10 from the TüBa-D/W corpus
TüBa-D/Z 1,490,229 149,472 Train and test section of the TüBa-D/Z corpus

Historical
Anselm 363,189 8,067 Complete Anselm corpus
DTA 17,700,513 470,864 All medical and theological texts from the DTA
GerManC 525,582 57,809 Complete GerManC corpus
ReF 1,163,530 104,318 ReF.RUB (manual and automatic part)

Table 8.3.: Overview of the trained language models. #Words gives the number of tokens without
punctuation. #Types is the number of unique words. For historical data sets, the orthographic
normalization is used instead of actual word forms. The last column specifies which data was
used for training. For example, all four subsets of the Gutenberg corpus were used to train a
joint model Gutenberg with 41M words and 811k unique word types. The approx. 500 test
sentences per data set are not included in the training data.

Table 8.4 shows the Out-of-Vocabulary (OOV) rates for the models on each test set. Between
0.8% and 7.8% of the words from the test data are not included in the training data and, hence, in
the language model. This mainly concerns low-frequency words, as is reflected in the considerably
higher OOV rates for types (i.e., unique words) with 2.7% to 25.5%. Relative clauses tend to contain
a lower proportion of unknown words than the sentence as a whole, except for the OPUSAction,
TüBa-D/S, Anselm, and ReF.RUB data sets.

Given the trained language models, there are two ways in which I want to explore the effects
of information density on extraposition. As explained in Chapter 2.2.3, extraposition could be
triggered by high surprisal of the extraposed constituents to prevent peaks of information in the
middle field. Or it could be a means to smooth the overall information profile of the sentence. To
address the first hypothesis, bigram surprisal values are calculated for all (normalized) word forms
and POS tags in the test data with the respective language models (ignoring punctuation). For each
extraposed and in situ RelC, the surprisal values are summed up and divided by the number of
words to calculate mean RelC surprisal.
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Model Corpus #Words #Types #WordsRelC

OOV (%)
Words Types RelC

Modern

Gutenberg
GutenbergFiction 15,997 5,432 4,871 0.93 2.74 0.86
GutenbergFolk-Tales 19,813 6,002 4,877 1.03 3.37 0.86
GutenbergNon-Fiction 19,849 6,837 6,047 1.49 4.29 1.24
GutenbergSpeech 19,177 5,379 6,462 0.79 2.77 0.65

OPUS
OPUSAction 6,285 2,188 2,867 2.31 6.58 2.41
OPUSComedy 6,662 2,185 3,045 2.06 6.18 1.90
OPUSDrama 6,719 2,223 2,979 2.10 6.34 2.01

SermonOnline SermonOnline 12,914 3,138 4,002 2.07 8.38 1.90
SdeWaC SdeWaC 26,438 8,701 8,691 7.13 21.18 6.21
Tiger Tiger 8,701 3,772 3,289 7.52 17.13 7.15
TüBa-D/S TüBa-D/S 3,737 851 1,110 2.41 10.46 3.06
TüBa-D/W TüBa-D/W 13,445 5,621 5,206 6.98 16.46 6.30
TüBa-D/Z TüBa-D/Z 14,264 5,662 5,603 6.05 15.17 5.05

Historical
Anselm Anselm 29,343 2,896 4,407 1.22 10.26 1.34
DTA DTAScience 22,546 6,791 7,074 1.88 6.10 1.81

GerManC

GerManCDRAM 9,969 3,175 3,678 5.02 15.59 4.87
GerManCHUMA 19,001 5,775 6,402 6.83 21.68 6.78
GerManCLEGA 30,237 7,668 10,226 7.04 25.48 6.71
GerManCNARR 18,448 5,403 6,088 6.28 20.97 6.19
GerManCNEWS 21,294 6,467 6,971 7.80 24.60 6.97
GerManCSCIE 19,840 5,594 6,828 6.71 22.51 6.69
GerManCSERM 15,606 4,244 6,005 4.29 15.29 4.25

ReF ReF.RUB 25,927 7,628 5,936 6.31 20.11 6.35

Table 8.4.: Out-of-Vocabulary (OOV) rates for the language models on the test data sets. #Words
gives the number of tokens in the test data set without punctuation. #Types is the number of
unique words. #WordsRelC is the number of words that are part of in situ and extraposed relative
clauses. For historical data sets, the orthographic normalization was used instead of actual word
forms. OOVWords is the percentage of words, and OOVTypes the percentage of types from the
test data that are not included in the language model. OOVRelC is the percentage of words from
the test data that are part of in situ or extraposed relative clauses but not included in the language
model.
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The second hypothesis can be tested using DORM and the corpus of variants method. For each
test sentence with at least one extraposed RelC, a variant sentence is generated as described in
Chapter 7.3, and surprisal values are re-calculated for the newly ordered words.99 Depending on
the number of originally extraposed RelCs, variant sentences may include different amounts of
change, which is not further considered here. For each test sentence, DORMorig and DORMvariant
values are calculated. As described in Chapter 2.2.3, DORM is defined as the sample variance of
the rolling means of adjacent surprisal scores. However, the definition does not restrict how the
surprisal scores are obtained. In this chapter, I experiment with different options including:

(i) Bigram surprisal of (normalized) word forms and POS tags

(ii) Bigram surprisal of words and mean bigram surprisal of constituents

Constituents are read off from the automatically generated constituency trees and roughly corre-
spond to phrases as defined in Chapter 6.2, without the restriction to only four phrase types. Rela-
tive clauses are analyzed as a single constituent.

The resulting DORMorig and DORMvariant values based on the different surprisal scores are used
to calculate DORMdiff scores, as described in Chapter 2.2.3. A negative DORMdiff value indicates
that extraposition improves the overall information profile of the sentence. A positive value sig-
nifies that leaving the RelC in situ would have resulted in a smoother distribution. An example
calculation based on bigram POS surprisal of words can be found in Figure 8.3. Figure 8.4 shows
the calculation with mean constituent surprisal.

99While unigram probabilities are independent of the surrounding context, re-calculation is necessary for n-grams with
n > 1. The original study by Cuskley et al. (2021) with DORM and UIDO only considers unigram surprisal because
determining the optimal information profile becomes computationally expensive with conditional probabilities that
must be re-calculated for all possible orders. With our DORMdiff measure and the corpus of variants, only two
alternatives are compared, which makes the probability calculation unproblematic.
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‘I happened to find something in your basement that really worries me.’

Figure 8.3.: Example calculation of DORM values based on bigram POS surprisal for a sentence
from the OPUSDrama test set. For each word in the original and variant sentence, bigram POS
surprisal is calculated with the OPUS language model. As the curves illustrate, surprisal values
differ between original and variant wherever a new bigram is created by undoing the extraposi-
tion (in the example: etwas/PIS-was/PRELS, beunruhigt/VVFIN-gefunden/VVPP). DORMorig
and DORMvariant values are then determined by taking the rolling mean of every two adjacent
surprisal scores and calculating the sample variance of the rolling means. DORMdiff is obtained
by subtracting the DORM value of the variant sentence from the DORM value of the original
sentence. A negative DORMdiff value indicates that the original sentence has a smoother infor-
mation profile, whereas a positive value means that the variant profile would be more uniform.

141



Chapter 8: Example Application

‘I happened to find something in your basement that really worries me.’

Figure 8.4.: Example calculation of DORM values based on mean bigram POS surprisal of con-
stituents for a sentence from the OPUSDrama test set. First, bigram POS surprisal is calculated
for each word in the original and variant sentence with the OPUS language model (cf. Fig-
ure 8.3). Then, mean constituent surprisal is calculated as the sum of the individual surprisal
scores divided by the number of words in a constituent. DORMorig and DORMvariant values
correspond to the sample variance of the rolling means of every two adjacent constituent sur-
prisal scores. DORMdiff is obtained by subtracting the DORM value of the variant sentence
from the DORM value of the original sentence. A negative DORMdiff value indicates that the
original sentence has a smoother information profile, whereas a positive value means that the
variant profile would be more uniform.
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8.3. Quantitative Analysis
In the following Sections 8.3.1–8.3.4, the automatically created annotations are used to exemplarily
inspect the effects of time, length, orality, and information density on the extraposition of relative
clauses.

8.3.1. Time
As already mentioned in Chapter 2, the frequency of extraposition has changed over time. In older
stages of German, the proportion of sentences with filled post-fields was higher than in modern
German (Schildt 1976). Possible explanations for the diachronic reduction of extraposition include
the gradual establishment of the sentence frame, increasing deviation from spoken language, and
the development of a written style with dense middle fields.

However, the development did not affect all constituents in the same way. While studies agree
that phrases are extraposed less frequently in modern German than in historical German, the picture
is less clear for relative clauses. Sahel (2015) reports that the proportion of extraposed RelCs may
actually have increased from 64% to 72% between 1650 and 1800. And there is still a significant
amount of extraposed RelCs in modern German, with approx. 24–25% in newspaper text (Uszkoreit
et al. 1998, also see Chapter 7). However, numbers from these studies are not comparable, as they
focus on different subsets of relative clauses, e.g., disregarding ambiguous cases and/or RelCs that
are not located in the middle field or post-field. Therefore, temporal developments are difficult to
predict, and the role of ambiguous RelCs also remains unknown. Conservatively, I expect to see
some change in the proportion of extraposed RelCs, although the direction and other specifics of
this change are unclear.

Hypothesis
The proportion of (unambiguously) extraposed RelCs has changed over time.

Figure 8.5 (top) shows the general diachronic development of RelC position. Except for the ear-
liest time period, the highest percentage of relative clauses is placed in situ, closely followed by
ambiguous cases in the youngest and oldest data. Unambiguously extraposed RelCs are always less
frequent than in situ RelCs.

Over time, the data suggests a parallel development of extraposition and embedding in opposition
to the number of ambiguous cases. Until 1700, the proportion of extraposed and in situ RelCs
increases to about 35% and 45%, respectively, before it decreases again. In contrast, the proportion
of ambiguous cases decreases to about 20% in 1700. This may be caused by a higher amount of
explicit right sentence brackets during the Early New High German period due to sociolinguistic
reasons (‘prestige’ of a complete sentence frame, cf. Takada 1998), which allows to unambiguously
determine the position of RelCs as either in situ or extraposed. In present-day German, the RelC
position is ambiguous for about 35% of the relative clauses.
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Figure 8.5.: Development of RelC positions over time, including all three positions (top) or only
unambiguous RelCs (bottom). For each year, the proportion of in situ (blue), ambiguous (black),
and extraposed (light green) relative clauses is determined. The plots show the local regression
lines (LOESS smoothing) with a confidence interval of 0.95.
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Figure 8.6.: Development of RelC positions over time in the six registers. For each year, the pro-
portion of in situ (blue), ambiguous (black), and extraposed (light green) relative clauses is
determined. The plot shows the local regression lines (LOESS smoothing) with a confidence
interval of 0.95.
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When only in situ and extraposed RelCs are compared (Figure 8.5, bottom), only small dia-
chronic changes are visible. The data suggests a slight increase of extraposed RelCs until 1800, as
reported by Sahel (2015), although these changes are much less pronounced when all in situ and ex-
traposed RelCs are considered. After 1800, the previous increase is counter-balanced with a slight
decrease. A general reduction of extraposition, like for phrases, cannot be observed for relative
clauses. Instead, the proportion of extraposed RelCs compared to in situ RelCs seems rather stable.
Overall, the number of in situ and extraposed RelCs changes mainly depending on the number of
ambiguous cases, for which no clear position can be determined. This speaks in favor of the deci-
sion from Chapter 7 to treat ambiguous RelCs as a separate category and not exclude them from
the analysis as in other studies.

Figure 8.6 shows that the distribution of RelC positions differs substantially between registers.
Interestingly, it is the spoken register that shows a decrease of extraposition (although in favor of
ambiguous and not in situ cases), whereas no such development is visible for the scientific or non-
fiction texts. This observation may hint at the importance of orality for extraposition (Section 8.3.3).

Result
The proportion of extraposed vs. in situ RelCs remains relatively stable over time. Overall, in
situ and extraposed RelCs show a mostly parallel development, which depends primarily on
the number of ambiguous cases, with a peak of unambiguous structures around 1700.

8.3.2. Length
The second factor that is generally assumed to influence extraposition is length. Longer constituents
are more likely to be extraposed (cf. Chapter 2.2.1). From a processing perspective, this may be
explained with less memory strain on the middle field or shorter dependencies between the sentence
brackets. Here, it means that extraposed RelCs should be longer than in situ RelCs. For ambiguous
cases, no prior expectations exist, but it seems plausible to assume that they lie between the other
two classes.
Hypothesis
Extraposed RelCs are longer on average than ambiguous and in situ RelCs.

Figure 8.7 shows the development of RelC length over time. While relative clauses are rather short
in the oldest data sets, the average length increases to about 12.5 words in 1700 before it decreases
again to about 8.5 words in present-day German. The median also reaches a plateau at around 8
words between 1700 and 1900 before it decreases again. The temporal changes are observed for
all three RelC positions but are more pronounced for extraposed RelCs than for ambiguous and in
situ cases. Interestingly, the pattern is very similar to that from the previous section: The increasing
length occurs in the same time window as the decrease of ambiguous cases. This observation could
speak for a higher sentence complexity in the early New High German period, with a peak in the
18th century.
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Figure 8.7.: Mean (solid line) and median (dashed line) length of relative clauses over time, for all
RelCs (top) and by position (bottom) for in situ (blue), ambiguous (black), and extraposed (light
green) RelCs. The plots show the local regression lines (LOESS smoothing) with a confidence
interval of 0.95. 147
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Figure 8.8.: Average length of in situ (blue), ambiguous (light gray), and extraposed (light green)
relative clauses. The boxes show the interquartile range from first to third quartile, with a black
line for median RelC length. The mean is indicated with a white dot. For better readability,
outliers (i.e., longer RelCs) are not displayed here.

RelC length differs depending on orality. Orally-oriented registers contain shorter RelCs than more
literate registers (mean: 7.6–9.6 vs. 11.0–11.9 words, median: 6–8 vs. 9 words; cf. Figure A.5
in the appendix; also see Figure A.6). The temporal development is roughly comparable between
registers (see Figure A.7 in the appendix).

In Figure 8.8, the general relationship between RelC position and length is shown. As expected,
extraposed RelCs are longer on average than in situ RelCs (mean: 11.2 vs. 9.3 words, median: 9
vs. 7 words). This difference is larger than the one reported by Uszkoreit et al. (1998), with 1.3
words in modern newspaper text. Ambiguous cases, which are usually discarded by studies on RelC
extraposition, indeed lie between the in situ and extraposed RelCs (mean: 10.5 words, median: 8
words). To test whether the differences are systematic or only occurred due to chance, a one-way
ANOVA is performed on a stratified random sample of 50 RelCs per position per data set, i.e.,
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1,250 RelCs per position and 3,750 RelCs in total.100 The ANOVA reveals a small main effect of
position on RelC length (F (2, 3747) = 23.14, p < 0.001, η2 = 0.012).101 A post hoc pairwise
comparison with Tukey’s HSD test confirms that the differences are highly significant between all
groups (p < 0.001). The results can be interpreted as evidence for the hypothesis that length affects
the extraposition of relative clauses.

Result
Extraposed RelCs are longer than ambiguous RelCs, which are longer than in situ RelCs. Rel-
ative clauses are longest in conceptually literate registers and the 17th–18th century.

8.3.3. Orality
The previous analyses have already highlighted differences between registers regarding RelC length
and diachronic development. However, as explained in Section 8.2.2, grouping texts into registers
is a rather broad categorization. In this section, the effects of orality on extraposition are explored
with our orality score as a more precise text-wise measure. Since extraposition is considered an
oral phenomenon, higher proportions of extraposed RelCs are expected in texts with higher orality
scores.

Hypothesis
Extraposed RelCs are more frequent in conceptually oral data.

Figure 8.9 displays the development of orality over time. Overall, orality scores in the data set
decrease from 1300 to about 1700, followed by an increase until present-day German. This can
partly be attributed to the distribution of registers in the data set: Early texts stem mainly from
the oral-style religious data, whereas the less oral registers are primarily available for later time
periods. Most registers have become less oral over time, as is often hypothesized in the literature.
The only clear exception is the spoken register, which can be explained by the included data. While
older data in the spoken register was meant to be recited orally (e.g., speeches, plays), the youngest
data contains transcripts of spoken language, which is expected to be the most oral form of written
language.

100Larger sample sizes are (almost) always better because they give better estimates of the (unknown) population. How-
ever, it is known that in statistical testing, large sample sizes can make even minor differences look ‘significant’. To
account for this, I use a smaller sample of only 3,750 RelCs instead of 563,577 RelCs for the statistical tests. The
sample is stratified, which means it is balanced regarding categories (equal amounts of in situ/ambig/extrap) and data
sets (150 RelCs per data set). Since the resulting number of RelCs is still higher than in most previous studies, I
report effect sizes to indicate whether the results are only caused by the large sample size (i.e., actually meaningless)
or if there is a relevant effect of the predictor variable.

101A one-way ANOVA is the preferred statistical test to compare the means of three groups, e.g., in situ vs. ambiguous vs.
extraposed. It requires normally distributed data and the homogeneity of variances, which are both violated by the
data set. Since the test is said to be robust against these violations, I nevertheless report the results. In addition, I also
performed the non-parametric Kruskal-Wallis test (χ2 = 64.268, df = 2, p < 0.001) and a post hoc Wilcoxon test
with Bonferroni adjustment, which confirm the highly significant differences between all groups.
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Figure 8.9.: Development of orality scores by register over time. The plot shows the individual
data points and local regression lines (LOESS smoothing) over the average score per year.

However, the dip of orality scores in several registers between 1600 and 1800 also coincides with
the observed increases in complexity (i.e., higher RelC length and fewer ambiguous cases) from the
previous sections.

Figure 8.10 shows the proportion of in situ, ambiguous, and extraposed RelCs depending on
the orality score. As observed for the temporal distribution (Section 8.3.1), in situ and extraposed
RelCs again follow a parallel development. Texts with higher orality scores contain fewer in situ
but also fewer extraposed RelCs in favor of more ambiguous cases. Only for the most oral texts, a
slight increase in extraposition and a decrease in embedding can be found.
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Figure 8.10.: RelC positions depending on orality. For visualization, orality scores are grouped
into bins of size 0.1. For each orality bin, the proportion of in situ (blue), ambiguous (black),
and extraposed (light green) relative clauses is determined. The plot shows the local regression
lines over bins (LOESS smoothing) with a confidence interval of 0.95.

As a consequence, ambiguous RelCs are associated with slightly higher orality scores than the other
groups (mean: 0.19 vs. 0.17; Figure 8.11), reflecting the parallel decrease of in situ and extraposed
RelCs in Figure 8.10. However, the small difference in orality between RelC positions is not sig-
nificant, as confirmed by a one-way ANOVA on a stratified sample of 50 RelCs per position and
data set (F (2, 3597) = 0.158, p = 0.854).102

102This is an example of how a large sample size can make even minor differences look ‘significant’. A one-way ANOVA
on the whole data set returns a highly significant main effect of position (F (2, 563149) = 749.6, p < 0.001),
with the difference lying primarily between the ambiguous RelCs and the other two groups. However, effect size
η2 = 0.003 is lower than 0.01, which means that, despite the significant results, there is actually no effect of position
on orality. On the smaller stratified sample, the ANOVA does not return this meaningless effect in the first place,
which speaks for using a smaller sample for significance testing.
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Figure 8.11.: Orality scores of in situ (blue), ambiguous (light gray), and extraposed (light green)
relative clauses. The boxes show the interquartile range from first to third quartile, with a black
line for the median orality score. The mean is indicated with a white dot. For better readability,
outliers are not displayed here.

Perhaps, a general effect of orality exists only for the extraposition of phrases and not for relative
clauses, which can be extraposed also in formal standard German. The observed differences in this
section are obviously driven by sentence complexity, with less complex sentences and, hence, more
ambiguous cases in oral language.

Result
There is no evidence for more (unambiguously) extraposed RelCs in conceptually oral data.
Instead, higher orality scores are linked to more ambiguous cases with a mostly parallel de-
crease of in situ and extraposed RelCs.
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8.3.4. Information Density
The fourth and final factor in the example analysis is information density. In our project, we were
particularly interested in the information-theoretic perspective on extraposition and how it may ease
processing by creating a better distribution of information. Voigtmann and Speyer (2021a) and
Voigtmann and Speyer (2021b) looked at mean surprisal in historical scientific texts, assuming that
more informative phrases and clauses are extraposed to prevent peaks of information and reduce
memory strain in the middle field. We also suppose that extraposition could improve the overall
information profile of the sentence in accordance with the Uniform Information Density (UID)
hypothesis, but this was difficult to quantify (cf. Chapter 2.2.3). In our recent study Ortmann et al.
(2022), we started experimenting with the DORM value as an objective measure of information
uniformity, which will be applied to extraposition for the first time in this thesis.

However, contrary to the previous analyses, the results in this section are not directly compara-
ble between registers and time periods. As explained in Section 8.2.3, both measures, mean RelC
surprisal and DORM, depend on surprisal values that are calculated with the help of corpus-specific
language models. To achieve low perplexities (i.e., good predictions), the LMs were trained sep-
arately for each data set. As a result, probabilities and the derived surprisal scores and DORM
values cannot be compared between language models with different vocabulary sizes.

To illustrate why this is the case, consider a toy language with a uniform distribution of words.
Given a training set with 10 different words, each word would be assigned a probability of 1

10 by
a unigram LM (without smoothing). If additional training data with 90 more different words from
the same uniform distribution was added, each word would now be assigned a probability of 1

100 ,
simply because more training data was available. This illustrates how vocabulary size influences
probability and, hence, surprisal scores, independently of the underlying distribution.

To make probabilities comparable, the smaller model from the toy example could be scaled to
the same size as the larger model by simulating more training data because the underlying (uniform)
distribution is known. However, the reality is more complex since natural languages do not follow
any linear distribution (think of Zipf’s law). And even different data sets from the same language
likely follow different distributions, e.g., depending on the degree of orality. As a consequence, type-
token ratios (TTR) change non-linearly with more training data, and there is no established way to
simulate a larger realistic training sample and transform the probabilities of one LM so that they
are comparable to those of another (larger) model. Thus, scaling or normalizing the probabilities
or surprisal values, as it was done for orality scores (Section 8.2.2), neither makes sense nor is it
clear what the result of such a manipulation should be.

There are two ways to address this problem if probabilities should be compared between language
models:

1. Use a general language model for all data sets (or one for historical and one for modern data,
both of equal size). Such a model would fit the data less well than a corpus-specific model,
leading to more unreliable predictions, e.g., for genre-specific words like ‘God’ in general vs.
in religious texts. In addition, training a general (historical) LM would first require the same
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orthographic normalizations for all historical data sets to prevent creating multiple ‘separate
vocabularies’ within one model.

2. Train all models on the same amount of (domain-specific) data. Since the available training
data differs considerably between registers and time periods, this would mean cutting all models
to the smallest available model size. That would significantly increase Out-of-Vocabulary rates
and perplexity for all larger models, especially on data sets with high type-token ratios. If a data
set has a low TTR (e.g., the Anselm data with 10%), a small model can be sufficient, whereas
for data sets with high TTRs (e.g., the Tiger test data with 43%), a larger model is vital for
meaningful results.

In light of the given problem, I decided to use the largest possible corpus-specific models for the
example analysis in this section and only compare values within data sets for a first impression of
the relationship between information density and extraposition. Future experiments should try to
build comparable models for different time periods and registers and compare the resulting surprisal
values between data sets to uncover even more interesting patterns.

Surprisal

In the first part of this section, the effects of mean surprisal on extraposition are explored. It is
known from previous research that highly informative constituents are more likely candidates for
extraposition. Hence, extraposed relative clauses should be more informative on average than em-
bedded RelCs. In this section, I will focus only on the distinction between extraposed and in situ
RelCs.

Hypothesis 1
Extraposed RelCs show higher mean surprisal than in situ RelCs.

Since surprisal values are not directly comparable between data sets, I do not report absolute val-
ues. Instead, I inspect the direction of the difference between mean surprisal values of in situ vs.
extraposed RelCs in each data set (Eq. 8.1). A negative difference means that the extraposed RelCs
are more surprising, whereas a positive difference indicates that in situ RelCs have a higher mean
surprisal.

surprisaldiff = mean(surprisalinsitu)−mean(surprisalextrap) (8.1)

I experiment with bigram surprisal based on (normalized) word forms representing the lexical level
and bigram surprisal based on POS tags representing the syntactic level. Tables 8.5 and 8.6 show
the results for each of the 23 data sets from Section 8.2.3.
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Corpus Surprdiff df t p-value Cohen’s d Effect size
GutenbergFiction + 571 1.123 0.262 0.09
GutenbergFolk-Tales + 570 2.406 < 0.05 * 0.20 small x
GutenbergNon-Fiction + 601 1.229 0.219 0.10
GutenbergSpeech + 623 1.542 0.124 0.12
OPUSAction + 506 0.444 0.658 0.04
OPUSComedy + 518 0.304 0.761 0.03
OPUSDrama - 515 -0.117 0.907 0.01
SdeWaC + 636 2.458 < 0.05 * 0.19
SermonOnline - 573 -0.964 0.335 0.08
Tiger + 353 0.918 0.359 0.10
TüBa-D/S + 173 0.272 0.786 0.04
TüBa-D/W + 516 4.859 < 0.001 *** 0.43 small x
TüBa-D/Z - 557 -0.710 0.478 0.06
Anselm - 542 -2.466 < 0.05 * 0.21 small ✓
DTAScience + 624 0.881 0.379 0.07
GerManCDRAM + 476 2.187 < 0.05 * 0.20 small x
GerManCHUMA + 630 0.242 0.809 0.02
GerManCLEGA + 693 0.996 0.320 0.08
GerManCNARR + 614 0.749 0.454 0.06
GerManCNEWS + 619 0.891 0.373 0.07
GerManCSCIE - 630 -0.351 0.726 0.03
GerManCSERM - 602 -0.950 0.343 0.08
ReF.RUB + 594 0.005 0.996 0.00

Table 8.5.: Difference in mean bigram word surprisal between in situ and extraposed RelCs. Since
surprisal values are not comparable between language models, only the direction of the differ-
ence is given. A positive difference (+) means that in situ relative clauses have a higher mean
surprisal than extraposed RelCs. If the extraposed RelCs have a higher mean surprisal, Surprdiff
is negative (-). For each corpus, the table also shows the results of an un-paired two samples
t-test (or a Welch t-test if homogeneity of variances is violated, according to an F test) and the
effect size according to Cohen’s d. If Surprdiff is negative with a significant p-value and at least
a small effect d ≥ 0.2, the hypothesis is confirmed (✓). If Surprdiff is positive with a significant
p-value and at least a small effect d ≥ 0.2, the hypothesis is rejected (x). Otherwise, there is
no relevant evidence for or against the hypothesis.
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Corpus Surprdiff df t p-value Cohen’s d Effect size
GutenbergFiction - 571 -1.681 < 0.1 . 0.14
GutenbergFolk-Tales - 569 -0.782 0.434 0.06
GutenbergNon-Fiction - 580 -1.044 0.297 0.08
GutenbergSpeech - 623 -2.517 < 0.05 * 0.20 small ✓
OPUSAction - 506 -3.365 < 0.001 *** 0.30 small ✓
OPUSComedy - 518 -4.909 < 0.001 *** 0.43 small ✓
OPUSDrama - 515 -5.033 < 0.001 *** 0.44 small ✓
SdeWaC - 639 -0.046 0.964 0.00
SermonOnline - 573 -5.554 < 0.001 *** 0.46 small ✓
Tiger + 353 0.830 0.407 0.09
TüBa-D/S - 173 -4.393 < 0.001 *** 0.66 medium ✓
TüBa-D/W + 516 0.988 0.324 0.09
TüBa-D/Z - 557 -1.885 < 0.1 . 0.16
Anselm - 542 -6.582 < 0.001 *** 0.57 medium ✓
DTAScience - 629 -0.322 0.748 0.03
GerManCDRAM + 444 0.737 0.462 0.07
GerManCHUMA + 623 0.166 0.869 0.01
GerManCLEGA + 685 1.733 < 0.1 . 0.13
GerManCNARR + 601 2.372 < 0.05 * 0.19
GerManCNEWS + 598 2.297 < 0.05 * 0.18
GerManCSCIE + 618 2.208 < 0.05 * 0.17
GerManCSERM - 599 -1.752 < 0.1 . 0.14
ReF.RUB - 594 -1.495 0.136 0.12

Table 8.6.: Difference in mean bigram POS surprisal between in situ and extraposed RelCs. Since
surprisal values are not comparable between language models, only the direction of the differ-
ence is given. A positive difference (+) means that in situ relative clauses have a higher mean
surprisal than extraposed RelCs. If extraposed RelCs have a higher mean surprisal, Surprdiff is
negative (-). For each corpus, the table also shows the results of an unpaired two-samples t-test
(or a Welch t-test if homogeneity of variances is violated, according to an F test) and the effect
size according to Cohen’s d. If Surprdiff is negative with a significant p-value and at least a
small effect d ≥ 0.2, the hypothesis is confirmed (✓). If Surprdiff is positive with a significant
p-value and at least a small effect d ≥ 0.2, the hypothesis is rejected (x). Otherwise, there is
no relevant evidence for or against the hypothesis.
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For POS-based surprisal, the majority of data sets show the expected direction with higher mean
surprisal for extraposed RelCs compared to in situ RelCs. For word forms, the opposite is true. To
test whether the differences are significant, I conducted paired two-sample t-tests for each data set
(or Welch t-tests if homogeneity of variances is violated, according to an F test). Most differences
turn out to be negligible. For word form surprisal, only the Anselm data shows a small effect
in favor of the hypothesis (Cohen’s d ≥ 0.2), while three data sets show a small negative effect
(GutenbergFolk-Tales, TüBa-D/W, and GerManCDRAM).

On the syntactic level, i.e., based on POS bigram surprisal, seven data sets show a small to
medium effect in favor of the hypothesis (Cohen’s d ≥ 0.2 and d ≥ 0.5, respectively). Interestingly,
all these data sets belong to the two orally oriented registers Religion and Spoken: GutenbergSpeech,
the OPUS data sets, SermonOnline, TüBa-D/S, and the Anselm corpus. Perhaps, this result hints
at the higher relevance of processing costs in oral language.

Result 1
In conceptually oral data, extraposed RelCs show higher syntactic surprisal than in situ RelCs.
In conceptually literate registers and on the lexical level, there is no evidence for a significant
relationship between mean RelC surprisal and extraposition.

DORM

Besides moving RelCs with high mean surprisal to the post-field to prevent peaks of information in
the middle field, the movement could also smooth the overall information profile of the sentence
compared to leaving the RelC in situ.

Hypothesis 2
Sentences with extraposition have a more uniform information profile than variant sentences
in which the extraposition was undone.

Again, I look at the difference in DORM values between the original sentences with extraposition
and the variant sentences with in situ RelCs (Eq. 8.2). I do not report absolute values because they
are not directly comparable between language models. A negative difference means that the original
sentence with extraposition has a more uniform information profile. A positive difference indicates
that leaving the relative clause in situ would have resulted in a smoother information distribution.

DORM diff = DORM orig −DORM variant (8.2)

I experimented with bigram surprisal based on (normalized) word forms representing the lexical
level and bigram surprisal based on POS tags representing the syntactic level. In addition, I calcu-
lated DORM values based on word surprisal and constituent surprisal. Intuitively, the calculation
based on constituents seems more meaningful because the choice of extraposing a complete con-
stituent or leaving it in situ is unlikely to depend only on single words (e.g., producing the verb in
the right bracket vs. the relative pronoun first).
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Corpus DORMdiff df t p-value Cohen’s d Effect size
GutenbergFiction - 238 -0.307 0.759 0.02
GutenbergFolk-Tales + 239 2.092 < 0.05 * 0.14
GutenbergNon-Fiction + 235 3.057 < 0.01 ** 0.20
GutenbergSpeech + 230 2.273 < 0.05 * 0.15
OPUSAction + 245 0.578 0.564 0.04
OPUSComedy + 240 0.055 0.956 0.00
OPUSDrama + 238 0.306 0.760 0.02
SdeWaC + 220 1.657 < 0.1 . 0.11
SermonOnline + 232 1.429 0.154 0.09
Tiger + 167 1.059 0.291 0.08
TüBa-D/S - 84 -0.901 0.370 0.10
TüBa-D/W + 241 2.002 < 0.05 * 0.13
TüBa-D/Z + 249 0.165 0.869 0.01
Anselm - 187 -6.154 < 0.001 *** 0.45 small ✓
DTAScience - 196 -0.086 0.932 0.01
GerManCDRAM + 188 1.845 < 0.1 . 0.13
GerManCHUMA + 203 2.362 < 0.05 * 0.16
GerManCLEGA - 195 -0.168 0.866 0.01
GerManCNARR + 202 2.136 < 0.05 * 0.15
GerManCNEWS + 217 0.151 0.880 0.01
GerManCSCIE + 203 3.565 < 0.001 *** 0.25 small x
GerManCSERM + 212 0.432 0.666 0.03
ReF.RUB + 193 1.489 0.138 0.11

Table 8.7.: Difference in DORM values between original and variant sentences based on mean bi-
gram word form surprisal of constituents. Since surprisal values are not comparable between
language models, only the direction of the difference is given. A negative difference (-) means
that the original sentence with extraposition has a lower DORM value (i.e., a smoother informa-
tion profile) than the variant sentence. If the variant sentence would be smoother, the DORMdiff
value is positive (+). For each corpus, the table also shows the results of a one-sample t-test and
the effect size according to Cohen’s d. If DORMdiff is negative with a significant p-value and
at least a small effect d ≥ 0.2, the hypothesis is confirmed (✓). If DORMdiff is positive with a
significant p-value and at least a small effect d ≥ 0.2, the hypothesis is rejected (x). Otherwise,
there is no relevant evidence for or against the hypothesis.
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Corpus DORMdiff df t p-value Cohen’s d Effect size
GutenbergFiction - 238 -5.706 < 0.001 *** 0.37 small ✓
GutenbergFolk-Tales - 239 -8.576 < 0.001 *** 0.55 medium ✓
GutenbergNon-Fiction - 235 -6.702 < 0.001 *** 0.44 small ✓
GutenbergSpeech - 230 -5.804 < 0.001 *** 0.38 small ✓
OPUSAction - 245 -7.789 < 0.001 *** 0.50 small ✓
OPUSComedy - 240 -8.531 < 0.001 *** 0.55 medium ✓
OPUSDrama - 238 -8.459 < 0.001 *** 0.55 medium ✓
SdeWaC - 220 -6.767 < 0.001 *** 0.46 small ✓
SermonOnline - 232 -6.903 < 0.001 *** 0.45 small ✓
Tiger - 167 -6.442 < 0.001 *** 0.50 small ✓
TüBa-D/S - 84 -5.510 < 0.001 *** 0.60 medium ✓
TüBa-D/W - 241 -11.554 < 0.001 *** 0.74 medium ✓
TüBa-D/Z - 249 -6.292 < 0.001 *** 0.40 small ✓
Anselm - 187 -4.516 < 0.001 *** 0.33 small ✓
DTAScience - 196 -4.499 < 0.001 *** 0.32 small ✓
GerManCDRAM - 188 -4.386 < 0.001 *** 0.32 small ✓
GerManCHUMA - 203 -5.602 < 0.001 *** 0.39 small ✓
GerManCLEGA - 195 -4.619 < 0.001 *** 0.33 small ✓
GerManCNARR - 202 -7.753 < 0.001 *** 0.54 medium ✓
GerManCNEWS - 217 -6.048 < 0.001 *** 0.41 small ✓
GerManCSCIE - 203 -6.167 < 0.001 *** 0.43 small ✓
GerManCSERM - 212 -5.644 < 0.001 *** 0.39 small ✓
ReF.RUB - 193 -2.381 < 0.05 * 0.17

Table 8.8.: Difference in DORM values between original and variant sentences based on mean
bigram POS surprisal of constituents. Since surprisal values are not comparable between lan-
guage models, only the direction of the difference is given. A negative difference (-) means that
the original sentence with extraposition has a lower DORM value (i.e., a smoother information
profile) than the variant sentence. If the variant sentence would be smoother, the DORMdiff
value is positive (+). For each corpus, the table also shows the results of a one-sample t-test and
the effect size according to Cohen’s d. If DORMdiff is negative with a significant p-value and
at least a small effect d ≥ 0.2, the hypothesis is confirmed (✓). If DORMdiff is positive with a
significant p-value and at least a small effect d ≥ 0.2, the hypothesis is rejected (x). Otherwise,
there is no relevant evidence for or against the hypothesis.
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Tables 8.7 and 8.8 show the results for DORMdiff based on mean constituent surprisal for word
forms and POS tags. For completeness, the results for DORM calculations based on word surprisal
can be found in the appendix (Tables A.13 and A.14).

Overall, the results are similar to those for surprisal above. Only four data sets show a negative
DORMdiff value on the lexical level. A one-sample t-test reveals that the values are not significantly
different from zero except for one data set with a small negative (GerManCScience) and one with
a small positive effect (Anselm). In contrast, all data sets show a significantly negative DORMdiff
value on the syntactic level (i.e., based on POS tags). Except for the ReF.RUB corpus, there is a
small to medium effect for each data set (Cohen’s d ≥ 0.2 and d ≥ 0.5, respectively). In other
words, original sentences indeed have more uniform information profiles on the syntactic level than
their variants.

Possible explanations for the differences between word forms and POS-based models could be
that the phenomenon of extraposition is syntactic in nature, and effects are only visible on the
syntactic level. Also, the word-based language models could not be powerful enough due to data
sparsity. If too many bigrams are unseen, this may obscure existing effects, which is less problematic
for POS-based models with their much smaller vocabulary size.

Result 2
Sentences with RelC extraposition exhibit a more uniform information profile on the syntactic
level than variant sentences in which the RelCs are placed in situ.

8.4. Discussion
In this chapter, I have exemplarily applied the methods from this thesis to illustrate their usefulness
for linguistic studies. I selected 25 large data sets of modern and historical German from 1300
to 2018, which were automatically annotated with topological fields, constituency trees, and the
extraposition of relative clauses. The resulting database includes more than 560k relative clauses
from different registers and time periods. For the example analysis, each text was analyzed con-
cerning its conceptual orality and automatically rated with our orality score. In addition, large
n-gram language models were created based on word forms and POS tags. The LMs were used to
calculate information-theoretic measures, in particular, mean RelC surprisal and DORM. For the
latter, a corpus of variants was generated to compare the information profiles of original sentences
and variant sentences in which the extrapositions have been undone.

Using the automatically created resources, I explored the effects of four factors that are said
to influence extraposition: time, length, orality, and information density. The example analysis
revealed that there is neither evidence for a general increase or reduction of extraposed RelCs over
time nor for a general effect of orality on RelC extraposition. Instead, extraposed and in situ RelCs
turned out to behave very similarly, in opposition to the number of RelCs in the ambiguous position
at the boundary of middle field and post-field. For RelC length, the analysis confirmed a significant
difference between RelCs in the three possible positions. As hypothesized, extraposed RelCs are
longer than ambiguous RelCs, which are longer than in situRelCs. In the final analysis, I observed an
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effect of information density on the syntactic level, with higher mean surprisal of extraposed RelCs
in oral registers and more uniform information profiles in original sentences with extraposition
compared to variant sentences with in situ RelCs.

The example analyses have given a good first impression of patterns in the data and revealed in-
teresting starting points for future studies. For example, the observed peak of complexity with long
RelCs, low orality scores, and few ambiguous cases around 1700 could be investigated more closely
to identify the linguistic factors that are involved in the changes before and after the peak. Also, the
observed differences between registers regarding the temporal development of extraposition or the
changes of orality in specific registers could be explored in more detail. Furthermore, additional
factors from Chapter 2.2.4 could be integrated into the analysis, e.g., the distance between RelCs
and their antecedents.

With this thesis, I have laid the foundation for such studies, demonstrating the benefits of com-
putational methods for creating large amounts of annotated data in a very short time and without
tremendous manual effort. In the next chapter, the contributions will be summarized and comple-
mented with suggestions for future improvements.
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Conclusion

In this thesis, the automatic syntactic analysis of modern and historical German was explored. Tra-
ditionally, studies on historical German and diachronic syntactic change are based on small, manu-
ally annotated data samples. Such qualitative investigations provide valuable insights, but they lack
the generalizability and statistical significance that quantitative approaches can offer. With my
work, I wanted to adopt a pragmatic perspective and create tools that are of practical value for such
linguistic studies by helping to compile large annotated data sets without the usual need for costly
and time-consuming manual labor. Along the way, I explored different types of syntactic annota-
tions and created models and data sets that previously did not exist for (historical) German. This
pioneering work can now serve as a foundation for future studies on various syntactic phenomena
– and for computational linguistic work with historical German in general.

Due to the high degree of variation and the ubiquitous lack of data and models, historical lan-
guage poses several challenges to the application of standard computational methods. Previous
studies on the automatic syntactic analysis of historical German have found different ways to deal
with these conditions. Approaches range from developing rule-based methods that heavily depend
on expert knowledge but do not require training data to transferring modern statistical models
to historical language. However, the accuracy of such approaches often remains unclear because
annotations are not evaluated, and tools and models are not made available. This prevents the en-
hancement of created resources as well as the application in practical contexts. In contrast, I have
developed flexible, probabilistic methods for modern and historical German that can be applied in
future projects and require only basic POS annotations as input. In addition, I have emphasized the
thorough evaluation of each annotation step, creating gold-standard data to guarantee maximum
transparency of the obtained results. The code and created models and data sets from this thesis
are made freely available for reuse and future enhancement. The developed methods are released
as the CLASSIG pipeline (Computational Linguistic Analysis of Syntactic Structures In German)
at https://github.com/rubcompling/classig-pipeline. Data sets, models,
and evaluation results are provided for download at https://github.com/rubcompli
ng/classig-data and https://doi.org/10.5281/zenodo.7180973. The
following paragraphs summarize the contributions of this thesis and provide suggestions for future
improvement.
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Summary of this Thesis

The overarching goal of the thesis was to develop methods for the automatic identification of ex-
traposition in modern and historical German. Extraposition was defined as the ‘movement’ of
constituents from the middle field (or sometimes the pre-field) of the sentence to the post-field.
Consequently, identifying extraposed constituents requires (i) the analysis of topological fields and
(ii) the recognition of candidates for extraposition.

I compiled training and evaluation data from different registers and time periods (Chapter 3)
and started with the identification of topological fields (Chapter 5). In a pilot study, I tested dif-
ferent approaches for the recognition of sentence brackets, and trained parser models for a general
topological field analysis. Since no historical training data was available, the models were trans-
ferred from modern newspaper data to other registers and historical German, using the shared level
of POS tags as input. For modern German, this approach yields overall F1-scores of 92%–97%,
while results for historical German range between 85% and 93%. The best results are achieved
for the sentence brackets, followed by middle and pre-fields. Post-fields, which are particularly
relevant for the recognition of extraposition, are recognized less reliably with 64%–87%.

During my experiments, I noticed that the application of traditional evaluation metrics leads to
undesirable effects when applied to labeled spans like topological fields. In response, I developed
a new evaluation method called FairEval (Chapter 4), which provides more meaningful results
than traditional metrics by preventing double penalties for overlapping spans. Simultaneously, it
enables a fine-grained error analysis for a detailed understanding of the underlying error causes. In
this thesis, all evaluations were performed with the new method for the most insightful analysis.
Results according to traditional evaluation metrics are provided in the appendix for comparison.

After the analysis of topological fields, I worked on the recognition of candidates for extraposition
(Chapter 6). I started with a study on chunking before proceeding to constituency analysis. My
focus was on constituents that are expected to show at least some variability regarding their position
in the middle field and post-field, namely noun phrases, prepositional phrases, adjective and adverb
phrases, and (attributive) relative clauses. I compared state-of-the-art neural sequence labeling to
unlexicalized probabilistic parsing. While sequence labeling yields very good results for chunking
modern German with F1-scores of 93%–97% and chunking historical German with 90%–94%,
parsing creates better results for the recognition of more complex constituents. I trained models on
different modern and historical treebanks and found that phrases can be recognized with F1-scores
of 86%–91% in modern German and 72%–85% in historical data. The identification of relative
clauses is even more accurate due to their distinctive structure, with F1-scores of 91%–96% in
modern and 76%–89% in historical German.

Building on these results, the automatic analysis of extraposition was explored (Chapter 7). First,
I considered the base position of extraposed elements, i.e., the original, unmarked position in
the middle field, and implemented the automatic identification of antecedents for attributive con-
stituents. I focused on attributive relative clauses and found that simple heuristics are sufficient to
reliably determine their base position. Given the topological field analysis and information about
the base position, candidates for extraposition were then labeled as in situ or extraposed (or ambigu-

163



Chapter 9: Conclusion

ous, in the case of relative clauses at the boundary of middle field and post-field). The evaluation
revealed that the analysis is not reliable for phrases yet. While in situ phrases are recognized with
high accuracy, the highest F1-scores for extraposed phrases are reached for PPs with 43%–82%.
For relative clauses, results are more accurate, with F1-scores of 77% to 96% for modern German
and 67% to 85% in historical data.

The final chapter (Chapter 8) focused on the extraposition of relative clauses and demonstrated
the usefulness of the developed methods with an example application. Large modern and historical
data sets were automatically annotated with topological fields, constituency trees, and extraposition,
yielding a database of over 560k relative clauses from different registers and time periods. With
our orality score and several trained n-gram language models, I exemplarily explored the effects
of different factors on RelC extraposition. The quantitative analyses revealed interesting patterns
in the data, confirming hypotheses about the effects of length and information density on RelC
extraposition but disproving the expected influence of time and orality. The example application
thus illustrated the benefits of computational methods for linguistic studies by creating large amounts
of annotated data in a very short time to verify existing hypotheses and spot interesting trends in
the data without tremendous manual effort.

Discussion and Future Work

The explorations in this thesis have shown what is and is not (yet) possible with the available re-
sources, highlighting opportunities for improvement. In the course of our project, the first hindrance
was the multitude of data formats and tagsets for (historical) German. If projects decide to develop
their own formats, converters to at least one standard format (e.g., CoNLL, TEI) should be provided.
Also, data sets should be enriched at least with basic linguistic annotations like sentence and token
boundaries, POS tags, and normalized word forms or lemmas, which are a prerequisite for almost
all computational linguistic approaches. If custom tagsets are used, they should be accompanied
by an official mapping to a standard tagset such as the STTS.

The experiments on topological field analysis have also revealed a startling lack of annotated
historical data. While (by now) there is at least one large constituency treebank of Early New High
German, which can be used to train and evaluate statistical models, the highly relevant topological
field structure has not received enough attention yet. Especially fields that are infrequent in the
existing modern data suffer from low recall, which directly affects the accuracy of subsequent anal-
yses like the recognition of phrasal extraposition. It would be desirable if future studies created
new training data for this widely used syntactic framework – perhaps in a semi-automatic manner
using the models from this thesis – to improve the analysis of modern non-standard registers and
historical data.

The methods in this thesis were developed primarily based on POS tags. If good uniform nor-
malizations are available for all data sets, follow-up experiments should explore topological field
analysis and constituency parsing with lexicalized, potentially neural models. Combined with ad-
ditional training data, these steps could improve the results for phrasal extraposition and enable a
reliable automatic analysis of influencing factors comparable to the example analysis of RelC ex-
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traposition. It can be expected that several of the hypotheses that were rejected for relative clauses
are more relevant to phrases, e.g., a diachronic decrease of extraposition or influences of orality.

The data that was created for this thesis could also be used for further analyses of interactions
between different factors, changes within registers, or interesting phenomena at specific time points.
Additional factors could be added to investigate their effects, validate qualitative assumptions, and
reveal new patterns in the data that only become visible from a quantitative perspective.

In the final chapter, I used corpus-specific language models of very different sizes, which did not
allow for direct comparisons between data sets. It would be interesting to enhance the information-
theoretic analyses by creating comparable models, possibly beyond bigrams, and study the effects
for different time periods, registers, and data sets. The example analysis was also the first time the
new DORM measure was applied to investigate the influence of extraposition on the information
profile of the sentence and quantify effects that previously were difficult to grasp. Since I found
very different results depending on the underlying surprisal values (POS vs. word forms, tokens vs.
constituents), the advantages and disadvantages of different calculation methods should be inspected
in more detail.

When I began this project, there was only little previous work on the automatic syntactic analysis
of historical German. With this thesis, I hope to have laid a foundation for future work in this
field, encouraging the application of computational methods to expand the possibilities of linguistic
studies beyond traditional limits.
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Additional Material

A.1. Data

Mercurius STTS
$! $.
$: $.
$; $.
$? $.
-- XY
KOMPE Tag of the following word
NNE NN
PROAV PAV
UNKNOWN XY
VVPG ADJD

Table A.1.: Mapping rules used to derive STTS POS tags (Schiller et al. 1999) from the custom
POS tags in the Mercurius corpus (Demske 2005). Tags that are not listed in the table remain
unchanged.
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ReF.UP STTS
-- XY
$! $.
$( $(
$, $,
$. $.
$: $.
$; $.
$? $.
$MK $,
$MSBI $.
$QL $(
$QR $(
ADJA ADJA
ADJD ADJD
ADJN ADJD
ADJS ADJA
ADJV ADJD
ADV ADV
APPO APPO
APPR APPR
APPRDARTB APPRART
APZR APZR
AVD ADV
AVNEG ADV
AVREL ADV
AVW PWAV
CARD CARD
DARTB ART
DARTU ART
DDEM PDAT
DINDEF PIAT
DPOS PPOSAT
DW PWAT

ReF.UP STTS
FM FM
ITJ ITJ
KOKOM KOKOM
KON KON
KOUI KOUI
KOUS KOUS
NA NN
NE NE
PAVAP ADV
PAVD ADV
PAVDAP PAV
PAVREL ADV
PAVRELAP PAV
PAVW PWAV
PAVWAP PWAV
PDEM PDS
PINDEF PIS
PPER PPER
PPOS PPOSS
PRELAT PRELAT
PRELS PRELS
PRF PRF
PTKA PTKA
PTKANT PTKANT
PTKNEG PTKNEG
PTKREL ADV
PTKVZ PTKVZ
PTKZU PTKZU
PW PWS
PWAV PWAV
SPELL XY
TRUNC TRUNC

ReF.UP STTS
VAFIN VAFIN
VAIMP VAIMP
VAINF VAINF
VAINFS VAINF
VAPP VAPP
VAPPA ADJA
VAPPD ADJD
VAPPN VAPP
VAPSA ADJA
VAPSD ADJD
VAPSN VAPP
VAPSS NN
VMFIN VMFIN
VMIMP VMIMP
VMINF VMINF
VMINFS NN
VMPP VMPP
VVFIN VVFIN
VVIMP VVIMP
VVINF VVINF
VVINFS NN
VVIZU VVIZU
VVPP VVPP
VVPPA ADJA
VVPPD ADJD
VVPPN VVPP
VVPPS NN
VVPS VVPP
VVPSA ADJA
VVPSD ADJD
VVPSN VVPP
VVPSS NN

Table A.2.: Mapping rules used to derive STTS POS tags (Schiller et al. 1999) from the custom
POS tags in the ReF.UP corpus (Demske 2019).
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HIPKON STTS
$_ $. $, $(
ADJ ADJA
ADJD ADJD
ADJO ADJA
ADJOD CARD
ADJOS NN
ADJS ADJA
ADV ADV
ADVNEG ADV
ADVREL ADV
APPO APPO
APPR APPR
APPRART APPRART
APZR APZR
AVD ADV
CARD CARD
CARDD CARD
DD PDAT
DDA ART
DDREL PRELS
DDS PDS
DDSREL PRELS
DI PIAT
DIA ART
DINEG PIAT
DIS PIS
DPOS PPOSAT
DPOSS PPOSS
FM FM
ITJ ITJ
KOKOM KOKOM
KON KON
KOUS KOUS

HIPKON STTS
NA NN
NE NE
PAV PAV
PAVREL ADV
PI PIS
PINEG PIS
PPER PPER
PRF PRF
PTKA PTKA
PTKNEG PTKNEG
PTKREL ADV
PTKVZ PTKVZ
PTKZU PTKZU
PW PWS
PWAV PWAV
PWAVREL PWAV
PWREL PRELS
ſ $. $,
VAFIN VAFIN
VAINF VAINF
VAPP VAPP
VMFIN VMFIN
VMIMP VMIMP
VMINF VMINF
VN VVPP
VVFIN VVFIN
VVIMP VVIMP
VVINF VVINF
VVPP VVPP
VVPPA ADJA
VVPS VVPP
VVPSD ADJD
VVPSS NN

Table A.3.: Mapping rules used to derive STTS POS tags (Schiller et al. 1999) from the customized
POS tagset of the HIPKON corpus (Coniglio et al. 2014). For punctuation symbols ($_), the
appropriate STTS tag $., $, or $( is determined based on the surface form of the token. In all
other cases, the replacement is independent of the particular words and contexts. There is no
original POS annotation available for 36 tokens from 3 sentences. The correct STTS tags for
those tokens were added manually.
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Lemma-POS Token-POS STTS

$( $( $(
$_ $_ $. or $,
ADJ ADJA ADJA
VVPP ADJA ADJA
VVPS ADJA ADJA
ADJ ADJD ADJD
VVPP ADJD ADJD
VVPS ADJD ADJD
ADJ ADJN ADJD
VVPP ADJN ADJD
ADJ ADJS ADJA
VVPP ADJS ADJA
VVPS ADJS ADJA
AP APPO APPO
AP APPR APPR
AP APPRDDART APPRART
AP APZR APZR
ADJ AVD ADV
AVD AVD ADV
VVPP AVD ADV
VVPS AVD ADV
AVG AVG PWAV
AVD AVNEG ADV
AVW AVW PWAV
CARD CARDA CARD
CARD CARDD CARD
CARD CARDN CARD
CARD CARDS CARD
DD DDA PDAT
DD DDART ART
DD DDD PDS
DD DDN PDAT
DD DDS PDS
DI DIA PIAT
DI DIART ART
DI DID PIS
DI DIN PIAT
DI DIS PIS
DI DNEGA PIAT
DI DNEGS PIS
DPOS DPOSA PPOSAT
DPOS DPOSD PPOSS
DPOS DPOSN PPOSAT
DPOS DPOSS NN
DD DRELS PRELS or PRELAT
DW DWA PWAT
DW DWS PWS
FM FM FM
ITJ ITJ ITJ
KO KO* KOUS
KO KOKOM KOKOM

Lemma-POS Token-POS STTS

KO KON KON
KO KOUI KOUI
KO KOUS KOUS
NA NA NN
VAPP NA NN
VVINF NA NN
VVPP NA NN
VVPS NA NN
NE NE NE
AP PAVAP APPR
AVD PAVAP PAV
AVD PAVD ADV
AVDAP PAVDAP PAV
AVDAP PAVRELAP PAV
AVW PAVW PWAV
AVDAP PAVWAP PWAV
PG PG PWS
NA PI PIS
PI PI PIS
PW PI PIS
PI PNEG PIS
PPER PPER PPER
PPER PRF PRF
PRF PRF PRF
PTK PTKA PTKA
PTK PTKANT PTKANT
PI PTKNEG PTKNEG
PTK PTKNEG PTKNEG
PTK PTKREL PRELS
AVD PTKVZ PTKVZ
PTK PTKZU PTKZU
PW PW PWS or PWAT
SPELL SPELL XY
SYM SYM XY
NA TRUNC TRUNC
UNK UNK XY
VA VAFIN VAFIN
VA VAIMP VAIMP
VA VAINF VAINF
VA VAPP VAPP
VA VAPS ADJD
VM VMFIN VMFIN
VM VMIMP VMIMP
VM VMINF VMINF
VM VMPP VMPP
VM VMPS ADJD
VV VVFIN VVFIN
VV VVIMP VVIMP
VV VVINF VVINF
VV VVPP VVPP
VV VVPS ADJD

Table A.4.: Mapping rules used to derive STTS tags from the HiTS tags (Dipper et al. 2013) in the
ReF.RUB corpus (Wegera et al. 2021), each of which consists of one tag for the lemma and
one for the token. Three rules are context dependent: $_>$_ is mapped to $. or $, depending
on the symbol and the punc annotation. DD>DRELS is mapped to PRELAT if the following
STTS tag is ADJA or NN and to PRELS otherwise. Similarly, PW>PW is mapped to PWAT
if the next tag is ADJA/NN and to PWS otherwise. 169
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A.2. Topological Fields

State
Event KOUI KOUS OTH PREL PTK PW VFin VImp VNonFin

C1 - C1, LK MF1 C1, LK RK2, RK C1, LK RK3, RK - RK2, RK
C2 C2, LK - MF2 - RK3, RK - - - RK3, RK
C3 - C3, LK MF4 C3, LK RK4, RK C3, LK RK5, RK - RK4, RK
C4 C4, LK - MF5 - RK5, RK - - - RK5, RK
C5 - C5, LK MF6 C5, LK RK6, RK C5, LK RK7, RK - RK6, RK
C6 C6, LK - MF7 - RK7, RK - - - RK7, RK
LK - - MF3 - RK1, RK - - - RK1, RK
MF1 - - MF1 - RK2, RK - RK3, RK - RK2, RK
MF2 - - MF2 - RK3, RK - - - RK3, RK
MF3 C6, LK C5, LK MF3 C5, LK RK1, RK C5, LK LK, LK LK, LK RK1, RK
MF4 - - MF4 - RK4, RK - RK5, RK - RK4, RK
MF5 - - MF5 - RK5, RK - - - RK5, RK
MF6 - - MF6 - RK6, RK - RK7, RK - RK6, RK
MF7 - - MF7 - RK7, RK - - - RK7, RK
RK1 C2, LK C1, LK START C1, LK RK1, RK C1, LK LK, LK LK, LK RK1, RK
RK2 C2, LK C1, LK START C1, LK RK2, RK C1, LK RK3, RK - RK2, RK
RK3 C2, LK C1, LK START C1, LK RK3, RK C1, LK LK, LK LK, LK RK3, RK
RK4 C4, LK C3, LK VF C3, LK RK4, RK C3, LK RK5, RK - RK4, RK
RK5 C4, LK C3, LK VF C3, LK RK5, RK C3, LK LK, LK LK, LK RK5, RK
RK6 C6, LK C5, LK MF3 C5, LK RK6, RK C5, LK RK7, RK - RK6, RK
RK7 C6, LK C5, LK MF3 C5, LK RK7, RK C5, LK LK, LK LK, LK RK7, RK

START C2, LK C1, LK VF C1, LK RK1, RK C1, LK LK, LK LK, LK RK1, RK
VF C4, LK C3, LK VF C3, LK RK1, RK C3, LK LK, LK LK, LK RK1, RK

Table A.5.: Transition table of the finite state transducer from the pilot study on sentence bracket
identification. For every input tag (Event), the transducer transitions from its current state (State)
to the state given in the respective table cell. If the state is part of a sentence bracket, the
second value from the cell, LK or RK, is output. Regarding the events, KOUI and KOUS
correspond to the respective POS tags. PREL includes words tagged as PRELS and PRELAT,
and PW includes PWAT, PWAV, and PWS. PTK refers to PTKZU and PTKVZ. Finite verbs are
captured with VFin. VImp includes all imperatives, and VNonFin corresponds to the remaining
verbs. OTH includes all other words and is also used to make the transducer more robust
against ungrammatical sentences and fragments. If an input word is not accepted at the current
state, OTH is tried instead of rejecting the sentence, thus enabling partial analyses. So, for
example, if the transducer is in state VF (corresponding to the pre-field of the sentence) and
a finite verb (VFin) is encountered, the transducer transitions to state LK (corresponding to a
left bracket) and outputs the label LK. From its new state, the transducer can only transition to
MF3 (corresponding to a middle field) or RK1 (a right sentence bracket). If the next token was
an imperative (VImp), this could not be accepted in the current state, so the transducer would
try OTH and transition to the middle field MF3 instead of rejecting the whole sentence.
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Figure A.1.: Simplified graphical representation of the finite state transducer from the pilot study
on sentence bracket identification. States that correspond to sentence brackets are colored in
red. Starting from the initial state S (grey), all clause types (V1, V2, and VL) can be parsed.
The large triangle in the middle roughly corresponds to a V2 clause with pre-field (state VF),
left bracket (LK), middle field (MF), and right bracket (RK). For V1 clauses, the transducer
may directly transition to the left bracket. VL clauses can be parsed with the small triangle at
the top and may also be embedded in the pre- or middle field (small triangles at the bottom).
The complete transition table can be found in Table A.5. The image was created with the
AutomataEditor by Kriz (2011).
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LK:
<PW(S|AV|AT)>{<V.FIN>} #1) Finite verb directly following an interrogative
{<PW(S|AV|AT)>}<[^L].*> #2) Interrogative not followed by a left bracket
{<PREL(S|AT)|KOU(I|S)>+} #3) Relative pronouns and conjunctions
RK:
<LK><.*>*?{<PTK(ZU|VZ)|V.+>+} #4) Particles and/or verbs following a left bracket
LK:
{<V.(FIN|IMP)>} #5) Verbal left bracket
RK:
{<PTK(ZU|VZ)|V.+>+} #6) Remaining verbs and particles

Er ist gekommen , um das , was der Teufel tut , zu zerstören .
PPER VAFIN VVPP $, KOUI PDS $, PRELS ART NN VVFIN $, PTKZU VVINF $.

1)
2)
3) LK LK
4) LK LK RK RK
5) LK LK LK RK RK
6) LK RK LK LK RK RK

He has come to destroy what the devil does.

Figure A.2.: Rules used by the regular expression parser in the pilot study on sentence bracket
identification. The rules are applied in the given order and return non-overlapping matches of
the expressions in curly brackets. All matches are chunked and labeled with the corresponding
tag. The chinks, as defined by everything outside of curly brackets, restrict the annotation
context. Rules 1, 2, 3, and 5 identify the left sentence bracket and rule 4 and 6 the right sentence
bracket. In the example from the Modern data set, rules 1 and 2 do not match because there
is no interrogative pronoun in the sentence. Rule 3 matches the subordinating conjunction and
the relative pronoun in the subordinate clauses and labels them as left brackets before rule 4
matches the finite verbs in the corresponding right brackets. Finally, rules 5 and 6 match the
left and right bracket in the main clause.
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#Sentence
S -> V2 | VL | FRAG

#Without pre-field (V1)
V2 -> LK | LK MF | LK NF | LK MF RK-V2 | LK RK-V2 | LK MF RK-V2 NF | LK RK-V2 NF

#With pre-field (V2)
V2 -> VF LK | VF LK MF | VF LK NF | VF LK MF RK-V2 | VF LK RK-V2 |

VF LK MF RK-V2 NF | VF LK RK-V2 NF
V2 -> KOORD V2 | V2 KOORD V2

#VL clause without LK (with infinitive)
VL -> RK-Inf | MF RK-Inf | MF RK-Inf NF | RK-Inf NF

#VL clause with LK
VL -> LK-C RK-VL | LK-C MF RK-VL | LK-C MF RK-VL NF | LK-C RK-VL NF
VL -> LV VL | KOORD VL | VL KOORD VL

#Fragment
FRAG -> OTH | OTH FRAG

#Main fields
LV -> OTH | OTH LV
VF -> OTH | OTH VF | RK-Inf | VL | PW
MF -> OTH | OTH MF | VL
NF -> OTH | OTH NF | VL | V2 | FRAG | PW

#Right sentence bracket
RK-V2 -> 'PTKVZ' | 'PTKVZ' RK-V2 | VNonFin | VNonFin RK-V2 | RK-V2 KOORD RK-V2
RK-VL -> V | V RK-VL | RK-VL KOORD RK-VL
RK-Inf -> VInf | VNonFin | 'PTKVZ' | VNonFin VInf | RK-Inf KOORD RK-Inf

#Left sentence bracket
LK-C -> PREL | KOU | PW | PREL LK-C | KOU LK-C | PW LK-C | LK-C KOORD LK-C
LK -> LK-Fin | LK-Imp
LK-Fin -> VFin | LK-Fin KOORD LK-Fin
LK-Imp -> VImp | LK-Imp KOORD LK-Imp

#Coordination field
KOORD -> 'KON'

#Verb categories
V -> VFin | VNonFin
VNonFin -> VInf | VPP
VFin -> 'VVFIN' | 'VAFIN' | 'VMFIN'
VImp -> 'VVIMP' | 'VAIMP' | 'VMIMP'
VInf -> 'VVINF' | 'VAINF' | 'VMINF' | 'VVIZU' | 'PTKZU' VInf
VPP -> 'VVPP' | 'VAPP' | 'VMPP'

#Complementizer categories
PW -> 'PWS' | 'PWAV' | 'PWAT'
PREL -> 'PRELS' | 'PRELAT'
KOU -> 'KOUS' | 'KOUI'

#Remaining POS tags
OTH -> 'ART' | 'ADJA' | 'ADJD' | 'APPR' | 'APPRART' | 'APZR' | 'APPO' | 'ADV' |

'CARD' | 'FM' | 'ITJ' | 'KOKOM' | 'KON' | 'NN' | 'NE' | 'PDS' | 'PDAT' |
'PIS' | 'PIAT' | 'PIDAT' | 'PPER' | 'PPOSS' | 'PPOSAT' | 'PRF' | 'PAV' |
'PTKNEG' | 'PTKANT' | 'PTKA' | 'TRUNC' | 'XY' | '$,' | '$.' | '$('

Figure A.3.: Hand-written context-free grammar used by the bottom-up left-corner chart parser in
the pilot study on sentence bracket identification. The grammar is based on the basic topological
field model depicted in Figure 5.1 and provides rules for the different clause types while also
considering possibly empty fields. A rule’s left-hand side specifies the parent node, while the
right-hand side lists possible child nodes. Alternatives are separated by pipes. For example,
a sentence S can consist of either a V2 clause, a VL clause, or a fragment. Terminal nodes,
i.e., POS tags, are surrounded by quotation marks. Terminal nodes dominated by an LK or
LK-C node are counted as left sentence bracket, while terminal nodes dominated by an RK-
V2, RK-VL, or RK-Inf node are counted as right sentence bracket.
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Punct News1
Corpus Prec Rec F1 Prec Rec F1

Traditional
TüBa-D/Z 98.61 99.10 98.85 99.42 99.21 99.31
Spoken 97.15 98.84 97.99 98.30 99.11 98.70
Modern 97.97 99.16 98.56 98.17 98.40 98.29
HIPKON 94.29 94.53 94.41 87.73 82.71 85.15
DTA 88.23 91.53 89.85 88.08 89.88 88.97

FairEval
TüBa-D/Z 99.06 99.36 99.21 99.58 99.39 99.48
Spoken 97.60 99.29 98.44 98.59 99.40 98.99
Modern 98.56 99.39 98.97 98.81 98.81 98.81
HIPKON 96.88 94.82 95.84 90.91 83.39 86.98
DTA 92.25 92.46 92.36 92.35 91.18 91.77

Table A.6.: Overall precision, recall, and F1-scores (in percent) for sentence bracket recognition
according to traditional and fair evaluation for the different models on each data set. The highest
scores for each corpus are highlighted in bold.

Punct News1
Corpus Prec Rec F1 Prec Rec F1

Traditional
TüBa-D/Z 94.15 95.14 94.64 96.36 96.47 96.41
Spoken 86.55 90.54 88.50 89.27 91.68 90.46
Modern 94.81 93.28 94.04 94.86 92.50 93.66
HIPKON 90.99 89.72 90.35 82.27 77.40 79.76
DTA 79.22 81.30 80.25 78.67 78.63 78.65

FairEval
TüBa-D/Z 95.25 96.67 95.96 97.31 97.44 97.37
Spoken 88.72 93.58 91.08 91.30 94.14 92.70
Modern 96.10 94.38 95.23 96.78 93.63 95.18
HIPKON 93.99 92.69 93.34 86.42 83.36 84.86
DTA 85.22 85.61 85.42 85.61 82.80 84.18

Table A.7.: Overall precision, recall, and F1-scores (in percent) for topological field parsing ac-
cording to traditional and fair evaluation for the different models on each data set. The highest
scores for each corpus are highlighted in bold.
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A.3. Chunks

PC:
1) {<KOKOM>*<APPR><(ART|PPOSAT|PDAT|PIAT|PWAT|CARD|ADJA|ADJD|ADV|PTKNEG|$,|$\(

|KON|TRUNC)>*<(NN|NE)>+<APZR>*}
2) {<KOKOM>*<APPRART><(CARD|ADJA|ADJD|ADV|PTKNEG|$,|$\(|KON|TRUNC)>*

<(NN|NE)>+<APZR>*}
3) {<KOKOM>*<(ART|PPOSAT|PDAT|PIAT|PWAT|CARD|ADJA|TRUNC)>

<(ART|PPOSAT|PDAT|PIAT|PWAT|CARD|ADJA|ADJD|ADV|PTKNEG|$,|$\(|KON|TRUNC)>*
<(NN|NE)>+<APPO>+}

4) {<KOKOM>*<(ART|PPOSAT|PDAT|PIAT|PWAT|CARD|ADJA|TRUNC)>*<(NN|NE)>+<APPO>+}
5) {<KOKOM>*<APPR><ART><(PIS|PPOSS)><APZR>*}
6) {<KOKOM>*<ART><(PIS|PPOSS)><APPO>}
7) {<KOKOM>*<(APPR|APPRART)><(PIS|PDS|PWS|PPER|PPOSS|PRELS|PRF)><APZR>*}
8) {<KOKOM>*<(PIS|PDS|PWS|PPER|PPOSS|PRELS|PRF)><APPO>}
9) {<KOKOM>*<APPR>*<PAV>}

NC:
10) {<KOKOM>*<(ART|PPOSAT|PDAT|PIAT|PWAT|CARD|ADJA|TRUNC)>

<(ART|PPOSAT|PDAT|PIAT|PWAT|CARD|ADJA|ADJD|ADV|PTKNEG|$,|$\(|KON|TRUNC)>*
<(NN|NE)>+}

11) {<KOKOM>*<(ART|PPOSAT|PDAT|PIAT|PWAT|CARD|ADJA|TRUNC)>*<(NN|NE)>+}
12) {<KOKOM>*<ART><(PIS|PPOSS)>}
13) {<KOKOM>*<(PIS|PDS|PWS|PPER|PPOSS|PRELS|PRF)>}

AC:
14) {<KOKOM>*<(ADJA|ADV|PTKNEG|PTKA)>*<ADJD>+}

ADVC:
15) {<KOKOM>*<(ADV|PTKNEG)>+}

NC:
16) {<KOKOM>*<CARD>+}

sPC:
17) {<KOKOM>*<(APPR|APPRART)><(ART|PPOSAT|PDAT|PIAT|PWAT|ADJA)>*}

sNC:
18) {<KOKOM>*<(ART|PPOSAT|PDAT|PIAT|PWAT|ADJA)>}

Figure A.4.: Rules used by the POS-based regular expression chunker. The rules are applied in
the given order and return non-overlapping matches of the expressions in curly brackets. First,
rules 1–9 identify prepositional chunks. Then, rules 10–13 add noun chunks, etc. POS tags
are from the STTS (Schiller et al. 1999). Linebreaks and rule numbers are added here for
better readability. For an application example of regex-based chunking to sentence bracket
recognition, see Figure A.2.
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News1 News2 Hist Mix
Corpus Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1

Traditional
TüBa-D/Z 95.80 94.53 95.16 90.02 84.92 87.40 - - - - - -
Tiger 83.97 89.69 86.74 92.06 92.80 92.43 - - - - - -
Modern 88.97 92.97 90.92 91.12 91.06 91.09 - - - - - -
Mercurius 84.92 86.94 85.92 84.15 82.33 83.23 88.25 90.33 89.28 88.82 88.06 88.44
ReF.UP 85.55 85.30 85.43 84.13 81.53 82.81 89.68 89.21 89.45 89.95 88.30 89.12
HIPKON 88.12 90.19 89.14 89.50 88.10 88.79 90.00 91.24 90.61 90.29 90.65 90.47
DTA 85.07 85.48 85.27 83.27 80.97 82.10 85.15 85.69 85.42 87.00 83.73 85.34

FairEval
TüBa-D/Z 96.85 96.77 96.81 91.45 91.02 91.24 - - - - - -
Tiger 90.38 90.99 90.68 94.99 95.04 95.01 - - - - - -
Modern 93.56 93.63 93.59 94.12 93.81 93.96 - - - - - -
Mercurius 90.61 90.14 90.38 88.56 88.52 88.54 92.83 92.78 92.81 92.24 92.13 92.18
ReF.UP 90.44 89.05 89.74 87.94 87.80 87.87 93.12 92.24 92.67 92.95 91.95 92.45
HIPKON 92.80 92.74 92.77 92.45 92.39 92.42 93.94 93.75 93.84 93.93 93.74 93.84
DTA 90.16 88.65 89.40 87.38 86.70 87.04 90.50 88.72 89.60 90.63 88.57 89.59

Table A.8.: Overall precision, recall, and F1-scores (in percent) according to traditional and fair
evaluation for chunking with the different models on each data set. Models trained on histor-
ical data are only applied to the historical test sets, and the highest scores for each corpus are
highlighted in bold.

176



Appendix A: Additional Material

A.4. Phrases

News1 News2 Hist Mix
Corpus Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1

Traditional
TüBa-D/Z 86.95 89.07 88.00 77.86 74.17 75.97 - - - - - -
Tiger 75.92 82.29 78.98 79.66 84.27 81.90 - - - - - -
Spoken 85.16 85.80 85.48 76.84 74.61 75.71 - - - - - -
Modern 83.25 84.33 83.79 81.40 77.77 79.54 - - - - - -
Mercurius 51.54 58.15 54.64 56.22 59.17 57.66 74.53 77.35 75.91 74.27 76.66 75.45
ReF.UP 51.01 51.42 51.21 49.24 53.75 51.39 79.54 80.07 79.80 78.97 80.49 79.72
HIPKON 65.58 68.32 66.92 63.76 71.99 67.62 78.19 81.33 79.73 77.27 81.59 79.37
DTA 66.08 62.75 64.37 63.99 56.25 59.87 62.96 56.80 59.72 66.14 57.89 61.74

FairEval
TüBa-D/Z 91.35 91.35 91.35 82.04 81.10 81.57 - - - - - -
Tiger 83.49 84.75 84.11 85.66 87.14 86.39 - - - - - -
Spoken 88.98 89.84 89.41 80.26 82.30 81.27 - - - - - -
Modern 88.27 88.23 88.25 84.77 84.11 84.44 - - - - - -
Mercurius 61.81 64.34 63.05 66.00 65.77 65.88 81.25 81.82 81.53 81.04 81.29 81.16
ReF.UP 58.55 58.93 58.74 59.07 59.03 59.05 84.02 84.30 84.16 83.98 84.15 84.07
HIPKON 74.54 74.75 74.64 75.10 75.45 75.27 84.88 84.96 84.92 84.69 84.77 84.73
DTA 73.03 70.07 71.52 69.61 64.90 67.17 69.10 64.80 66.88 70.45 66.75 68.55

Table A.9.: Overall precision, recall, and F1-scores (in percent) according to traditional and fair
evaluation for phrase recognition with the different models on each data set. Models trained on
historical data are only applied to the historical test sets, and the highest scores for each corpus
are highlighted in bold.

News1 News2 Hist Mix

TüBa-D/Z 91.96 n.a. n.a. n.a.
Tiger n.a. 86.42 n.a. n.a.
Mercurius n.a. 52.27 77.68 77.44
ReF.UP n.a. 45.15 78.97 79.13

Table A.10.: Overall labeled F1-score for the four trained parser models on the test data, excluding
virtual root nodes. Training and test trees are modified as described in Section 6.2.2, and models
are only evaluated on test data that follows the same syntactic annotation scheme as the training
data.

177



Appendix A: Additional Material

A.5. Relative Clauses

News1 News2 Hist Mix
Corpus Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1

Traditional
TüBa-D/Z 93.41 92.78 93.09 84.85 83.64 84.24 - - - - - -
Tiger 90.46 90.46 90.46 93.44 93.11 93.27 - - - - - -
Spoken 85.93 84.38 85.15 83.64 81.38 82.50 - - - - - -
Modern 87.69 87.69 87.69 80.00 80.00 80.00 - - - - - -
HIPKON 81.08 65.22 72.29 81.25 56.52 66.67 86.67 84.78 85.71 84.78 84.78 84.78
DTA 72.19 63.74 67.70 64.10 58.48 61.16 66.25 61.99 64.05 66.87 64.91 65.88

FairEval
TüBa-D/Z 96.47 95.85 96.16 91.74 90.45 91.09 - - - - - -
Tiger 94.64 94.64 94.64 96.52 96.17 96.34 - - - - - -
Spoken 92.13 90.35 91.23 90.94 88.27 89.59 - - - - - -
Modern 93.44 91.94 92.68 88.89 87.39 88.14 - - - - - -
HIPKON 85.71 68.18 75.95 86.67 59.09 70.27 89.66 87.64 88.64 88.64 88.64 88.64
DTA 81.95 72.19 76.76 76.92 69.93 73.26 77.09 72.35 74.65 77.89 75.77 76.82

Table A.11.: Overall precision, recall, and F1-scores (in percent) according to traditional and fair
evaluation for RelC identification with the different models on each data set. Models trained on
historical data are only applied to the historical test sets, and the highest scores for each corpus
are highlighted in bold.
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A.6. Extraposition

News1 News2 Hist Mix
Corpus Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1

Traditional
TüBa-D/Z 86.54 89.03 87.77 79.18 76.96 78.05 - - - - - -
Tiger 82.33 86.30 84.27 85.46 89.26 87.32 - - - - - -
Spoken 83.93 86.28 85.09 76.96 77.41 77.19 - - - - - -
Modern 78.26 82.93 80.53 76.69 78.91 77.78 - - - - - -
HIPKON 63.35 65.39 64.35 63.41 67.69 65.48 76.13 76.36 76.25 75.45 76.44 75.94
DTA 63.77 68.54 66.07 63.16 62.08 62.62 63.30 63.55 63.42 65.63 66.33 65.98

FairEval
TüBa-D/Z 91.12 91.91 91.52 84.66 83.49 84.07 - - - - - -
Tiger 87.84 92.37 90.05 89.93 94.14 91.98 - - - - - -
Spoken 88.85 90.21 89.53 82.43 83.73 83.08 - - - - - -
Modern 86.09 86.56 86.32 84.54 83.61 84.07 - - - - - -
HIPKON 73.10 74.12 73.61 75.03 74.46 74.75 84.21 82.88 83.54 83.59 82.97 83.28
DTA 73.39 74.94 74.16 72.16 70.23 71.18 73.07 70.43 71.73 74.80 73.78 74.29

Table A.12.: Overall precision, recall, and F1-scores (in percent) according to traditional and fair
evaluation for extraposition analysis with the different models on each data set. Models trained
on historical data are only applied to the historical test sets, and the highest scores for each
corpus are highlighted in bold.
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A.7. Example Analysis

Figure A.5.: Average length of relative clauses per register. The boxes show the interquartile range
from first to third quartile, with a black line for median RelC length. The mean is indicated with
a white dot. For better readability, outliers (i.e., longer RelCs) are not displayed here.
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Figure A.6.: Mean and median length of relative clauses by orality score. For visualization, scores
are grouped into bins of size 0.1. The plot shows the local regression lines over orality bins
(LOESS smoothing) with a confidence interval of 0.95.
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Figure A.7.: Mean and median length of relative clauses per register over time. The plot shows the
local regression lines (LOESS smoothing) with a confidence interval of 0.95.
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Corpus DORMdiff df t p-value Cohen’s d Effect size
GutenbergFiction - 238 -1.082 0.280 0.07
GutenbergFolk-Tales - 239 -1.210 0.228 0.08
GutenbergNon-Fiction + 235 0.730 0.466 0.05
GutenbergSpeech + 230 0.502 0.616 0.03
OPUSAction - 245 -1.371 0.172 0.09
OPUSComedy - 240 -2.784 < 0.01 ** 0.18
OPUSDrama - 238 -1.484 0.139 0.10
SdeWaC + 220 3.871 < 0.001 *** 0.26 small x
SermonOnline - 232 -5.143 < 0.001 *** 0.34 small ✓
Tiger + 167 2.001 < 0.05 * 0.15
TüBa-D/S - 84 -2.046 < 0.05 * 0.22 small ✓
TüBa-D/W + 241 2.497 < 0.05 * 0.16
TüBa-D/Z + 249 1.514 0.131 0.10
Anselm - 187 -7.024 < 0.001 *** 0.51 medium ✓
DTAScience - 196 -0.803 0.423 0.06
GerManCDRAM + 189 1.868 < 0.1 . 0.14
GerManCHUMA + 203 2.211 < 0.05 * 0.16
GerManCLEGA - 196 -0.485 0.628 0.04
GerManCNARR + 202 2.062 < 0.05 * 0.14
GerManCNEWS - 217 -1.799 < 0.1 . 0.12
GerManCSCIE - 203 -0.308 0.758 0.02
GerManCSERM - 212 -1.643 0.102 0.11
ReF.RUB - 193 -0.974 0.331 0.07

Table A.13.: Difference in DORM values between original and variant sentences based on bigram
word form surprisal. Since surprisal values are not comparable between language models, only
the direction of the difference is given. A negative difference (-) means that the original sen-
tence with extraposition has a lower DORM value (i.e., a smoother information profile) than
the variant sentence. If the variant sentence would be smoother, the DORMdiff value is positive
(+). For each corpus, the table also shows the results of a one-sample t-test and the effect size
according to Cohen’s d. If DORMdiff is negative with a significant p-value and at least a small
effect d ≥ 0.2, the hypothesis is confirmed (✓). If DORMdiff is positive with a significant
p-value and at least a small effect d ≥ 0.2, the hypothesis is rejected (x). Otherwise, there is
no evidence for or against the hypothesis.
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Corpus DORMdiff df t p-value Cohen’s d Effect size
GutenbergFiction - 238 -0.898 0.370 0.06
GutenbergFolk-Tales - 239 -3.204 < 0.01 ** 0.21 small ✓
GutenbergNon-Fiction - 235 -2.668 < 0.01 ** 0.17
GutenbergSpeech - 230 -3.139 < 0.01 ** 0.21 small ✓
OPUSAction + 245 2.209 < 0.05 * 0.14
OPUSComedy + 240 5.732 < 0.001 *** 0.37 small x
OPUSDrama + 238 3.016 < 0.01 ** 0.20
SdeWaC - 220 -8.329 < 0.001 *** 0.56 medium ✓
SermonOnline - 232 -4.323 < 0.001 *** 0.28 small ✓
Tiger - 167 -2.203 < 0.05 * 0.17
TüBa-D/S + 84 7.962 < 0.001 *** 0.86 large x
TüBa-D/W - 241 -7.687 < 0.001 *** 0.49 small ✓
TüBa-D/Z - 249 -1.969 < 0.1 . 0.12
Anselm - 187 -1.865 < 0.1 . 0.14
DTAScience - 196 -3.057 < 0.01 ** 0.22 small ✓
GerManCDRAM - 189 -2.414 < 0.05 * 0.18
GerManCHUMA - 203 -1.553 0.122 0.11
GerManCLEGA - 196 -1.398 0.164 0.10
GerManCNARR - 202 -0.403 0.687 0.03
GerManCNEWS - 217 -1.774 < 0.1 . 0.12
GerManCSCIE - 203 -0.225 0.822 0.02
GerManCSERM - 212 -0.358 0.720 0.02
ReF.RUB + 193 0.224 0.823 0.02

Table A.14.: Difference in DORM values between original and variant sentences based on bigram
POS surprisal. Since surprisal values are not comparable between language models, only the
direction of the difference is given. A negative difference (-) means that the original sentence
with extraposition has a lower DORM value (i.e., a smoother information profile) than the
variant sentence. If the variant sentence would be smoother, the DORMdiff value is positive
(+). For each corpus, the table also shows the results of a one-sample t-test and the effect size
according to Cohen’s d. If DORMdiff is negative with a significant p-value and at least a small
effect d ≥ 0.2, the hypothesis is confirmed (✓). If DORMdiff is positive with a significant
p-value and at least a small effect d ≥ 0.2, the hypothesis is rejected (x). Otherwise, there is
no evidence for or against the hypothesis.
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