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Abstract

We study how the use of machine-learning based algorithms for the determination of wage
offers affects workers’” wages on online labor platforms. Firms use reinforcement-learning to
update posted wages on the platform, and heterogeneous workers send applications based on
the posted information. We show that if firms use a deep Q-network (DQN), as an example of a
state-of-the-art machine learning algorithm, the emerging wages closely resemble the equilibrium
outcome. However, slightly changing the setup of the algorithms can lead to substantial collusion
and wages well below the equilibrium level. In particular, we identify a specific property of the
algorithms, namely whether experience replay is used, which determines whether collusion occurs
or not. Our findings are robust with respect to many features of the model, including the design
of the online labor platform.

Keywords: online digital labor platforms, duopsony, deep Q-network, experience replay, wages

1 Introduction

Evidence suggests that workers on online labor platforms earn low wages, sometimes even below
countries’ legislated minimum wages (Berg et al |2018). One explanation has been the monopsony
power of employers which would allow firms operating through online labor platforms to lower wages
below workers’ marginal product. Monopsony power, it is argued, may arise because there is a low
number of employers posting tasks on online labor platforms, from idiosyncratic preferences that
workers have over tasks, or from search frictions on the side of the employers or workers — although
it is likely that online labor platforms have decreased these frictions substantially. Estimates of
the labor supply elasticity to firms using data from online labor platforms arrive at elasticities as
low as 0.1 (Azar et al., 2019; |Dube et al., [2020; Duch-Brown et al., [2022)), suggesting considerable
monopsony power of employers posting tasks on these platforms.

Another explanation of low wages of workers on online labor platforms could be that employers
posting tasks on these platforms use algorithms to set wages that implicitly collude to raise em-
ployers’ profits at the expense of workers’ wages. Could it be that the observed low wages for online
platform workers are the result of employers using algorithms that collude when posting tasks?
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It is hard to get reliable data on whether employers using labor online platforms deliberately
choose algorithms that result in collusive behavior. What we do know, however, is that among the
firms using online platforms in general “A majority of retailers track the online prices of competitors.
Two thirds of them use software programs that autonomously adjust their own prices based on the
observed prices of competitors”. (European Commission, 2017, p. 5). Moreover, the same report
states that “The availability of real-time pricing information may also trigger automatised price
coordination. The wide-scale use of such software may in some situations, depending on the market
conditions, raise competition concerns.”(p. 5). This suggests that employers may use algorithms
for posting tasks on online labor platforms and it is important to understand the implications of
such use of algorithms.

Which pricing algorithms firms exactly use is a black box and few attempts have been made
to study collusion by algorithms empirically (Assad et al., 2022). Therefore, the possibility of
algorithmic collusion has so far been explored using market simulations. In the context of product
markets, several recent contributions have shown in different settings that collusion emerges if firms
use a (tabular) Q-learning algorithm (Calvano, Calzolari, Denicol6 and Pastorello, 2020; Calvano
et al., 2021} Klein, 2021). The amount of collusion is, however, mitigated or even overall eliminated
if the algorithm can incorporate additional information about a market’s demand structure (Asker
et al., [2022) ]

Our analysis extends this stream of literature in two important dimensions. First, we consider the
implications of the use of algorithms in the context of labor markets rather than product markets.
Second, whereas the work discussed above has assumed that firms rely on basic tabular Q-learning
algorithms developed in the 1990s, we employ in our analysis a state-of-the art reinforcement
learning algorithm designed for the use in problems with large state spaces, in particular also
discretizations of continuous state spaces. Given that firms choosing wages (or prices) face problems
with continuous state spaces, it seems natural that they rely on advanced algorithms developed
for that purpose. More precisely, we assume that firms use deep Q-network (DQN) algorithms,
which are highly popular in the machine learning literature (Mnih et al., 2015} |Goodfellow et al.,
2016), for updating their wage setting rules over time. With respect to the information available for
training the algorithm, we assume, similar to (Calvano, Calzolari, Denicol6 and Pastorello, 2020}
Calvano et al., [2021; |[Klein, 2021) that only wage information publicly observable on the platforms
and the firms own profit is used by the algorithm.

Our economic environment consists of a duopsony model of the labor market, where two firms
compete for workers by posting on an online labor platform tasks to be carried out. We distin-
guish between two different labor platforms designs where a key distinguishing factor is whether
firms combine tasks placed on the platform with binding wage offers or not. On Amazon Me-
chanical Turk, which is one of the five online digital labor platforms dominating the market (see
https://ilabour.oii.ox.ac.uk/onlinelabour- index/), tasks are placed as take-it-or-leave-it offers. In
a take-it-or-leave-it set-up, an employer posts a task with the wage she is willing to pay. Workers
then may accept this task or not at the offered wage. There is no bargaining over the wage of the
job. Other prominent online digital labor platforms such as Freelancer, Guru, or Upwork follow a
bidding model. Here, employers post a task, sometimes with a wage range they would be willing
to pay, and workers bid for the jobs informing the employers about the wage they want to be paid.
Employers then decide whom to offer the job.

The two matching protocols of online labor platforms make different sets of information public. In
the take-it-or-leave-it framework, employers (and their algorithms) have access to information about

!Earlier work studying the interaction of algorithmic decision makers on product markets considered mostly
quantity competition and the learning behavior of genetic algorithms or classifier systems. This stream of literature
found no indication for the emergence of collusion but, depending on the considered setup, convergence to Nash
equilibrium (Vriend} |2000)) or even Walrasian equilibrium (Arifovicl [1994).



the wages their competitors pay for their tasks. This is not the case for the bidding framework,
where the agreed wage is private information between the firm and the worker, whom the job was
offered and who took it. Standard game-theoretic reasoning implies that collusion can be easier
established and sustained as equilibrium outcome in the take-it-or-leave-it framework, since in this
setting each firm can observe deviations from the collusive wage (i.e. increasing the own wage
offer to attract additional workers) by the competitor and then retaliate in the following periods
(Fudenberg and Maskinl 1986)).

We use this economic environment to analyze the consequences of algorithmic wage setting by
firms for the emerging wages in this market. First, we study whether the design of the platform has
an impact on wages and on the prevalence of collusion in the market. Second, we explore the impact
of a variation of the DQN algorithm. In particular, we consider a scenario where an important
feature of DQNs called experience replay (see below) is disabled. We consider this variation of the
algorithm, since experience replay is a crucial difference between DQN and the basic Q-learning
algorithms studied in most previous work on collusion in markets.

2 Interaction on the labor platform

FEmpirically, we observe substantial market power of employers on online digital labor platforms.
For example, about 10% of employers post approximately 98% of the tasks on Amazon Mechanical
Turk (Kingsley et al., 2015]). To capture such market power of employers on online labor platforms,
we consider a stylized duopsony model of the labor market, in which two firms compete by simul-
taneously posting tasks (and associated wage offers) on the platform to maximize their profits.
Workers have heterogeneous preferences with respect to carrying out the tasks announced by the
two firms. They decide which task to accept in light of these preferences, the wages offered by
both firms as well as their reservation utility. A Nash equilibrium in the (one-shot) model is a pair
of wage offers such that each firm maximizes its profit given the wage offered by the competitor.
Collusive wages result if both wages are chosen in a way to maximize the sum of the profits of both
firms. A crucial parameter in the model is the strength of the worker preferences between tasks,
which is denoted by e. The smaller the parameter e is, the larger is the intensity of competition
between firms. If the parameter e is very large, then under Nash equilibrium wages workers prefer
not working to carrying out the less preferred task, and a ‘local monopsony’ scenario arises. In this
scenario, the two firms do not directly compete with each other, but each firm effectively has its
local pool of potential employees for whom it acts as monopsonist (see Appendix [A| for a detailed
description of the model and the calculation of Nash equilibrium and collusive wages for different
values of e).

3 Deep Q-Network learning of wage setting strategies

In our baseline setting, we implement the duopsony model in a simulation framework where two
firms (i = 1,2) every period simultaneously decide on wage offers, each using a DQN algorithm.
In a DQN (Mnih et al., 2015), firm 7 sets its wage using a deep neural network which represents
an action-value function Q(s;,w;;6;), where s; € S is the state of firm ¢ in period ¢, w; € W a
potential action of firm ¢ in period ¢, and 6; the vector of weights in the neural network.

In our setting, the set of of firms’ actions consists of an equally discretized wage space W C [w, w].
We define states in the take-it-or-leave-it model as all possible combinations of wages chosen by
the two firms in the previous period, s;; = (w1 ¢—1,w2;—1). In the bidding model, since the firm
does not know which wage was offered by her competitor, the states are defined only as the wage
chosen by the firm under consideration in the previous period, i.e. s;; = w; 1.



level level

M ©oo0n M co.0n

15- W o102 15- B o102
W 0203 B 0203

~ 0 0304 o [ 0304
& [ 0405 3 [ 0405
= [ 0508 s [ 0508

(06,0.7]
©7.08)
(08.09]
(0.9,1.0]

06,07
(07,08
(08,09
09,10]

Figure 1: Figure shows heat map for learned wages wagel and wage2 of firms 1 and 2, respectively,
over 100 repetitions at iteration 500,000. Simulation model is take-it-or-leave-it (a) and bidding
(b) online labor platform with firms applying DQN with experience replay to set wages. Density
estimates scaled to a maximum of one.

Input nodes of the DQN representing the action-value function Q(s;,w;;0;) correspond to the
components of the states s; of a firm. Each output node corresponds to an action w € W and
gives the estimation of the Q-value for this action. A firm 4 trains the DQN by adjusting every
period the vector of weights 6; in order to reduce the mean-squared error of the right hand side
of an appropriate Bellman equation (see the pseudo code in Algorithm . The adjustment of the
weights follows a standard gradient descent algorithm. An important feature of a DQN is that in
each updating period it is trained using not only the most recent observation but a sample from
the set of past observations. This feature is called experience replay and has been shown to foster
convergence and performance of the algorithm (Mnih et al., 2015). In contrast, standard tabular
Q-learning algorithms, which have been used in almost all previous market simulation studies, rely
only on the most recent observation in each step of their training.

A greedy algorithm guarantees that there is experimentation about the actions chosen. The
e-greedy model of exploration chooses the action w;; maximizing Q(s;+, w;; 0;¢) with probability
1 — ¢; and randomizes uniformly over all actions with probability €¢;. The exploration rate declines
with ¢, = e P, where 3 > 0 is a parameter. Thus, initially, firms choose their wage offers randomly,
but, as time passes, actions in line with the highest Q-value become more likely.

A more detailed description, including a pseudo-code, of the DQN and how it is embedded in
the economic environment, is given in Appendix

4 Results

We simulate the model with a baseline parameter setting (see Appendices |A| and , but vary
parameters for robustness checks. The parameters chosen imply a Nash equilibrium in wages of
19.6 and a collusive wage of 5.2 for the analytical model (see Appendix[A]). This is the benchmark to
which we compare the simulation in which firms set wages using a DQN with or without experience
replay. A single run consists of 500,000 iterations. For each parameter setting, we conduct 100
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Figure 2: Figure shows heat map for learned wages wagel and wage2 of firms 1 and 2, respectively,
over 100 repetitions at iteration 500,000. Simulation model is take-it-or-leave-it (a) and bidding (b)
online labor platform with firms applying DQN without experience replay to set wages. Density
estimates scaled to a maximum of one.

runs.

To evaluate the learning ability of the algorithm without interacting firms, we first consider
the case where the strength of worker preference parameter e is so large that we are in the local
monopsony scenario. As is shown in Figure [5] in Appendix [C] in this scenario both firms learn to
choose the wage which maximizes their profit regardless of the platform design and for both DQN
variants with and without experience replay.

Next we consider the duopsony model for scenarios where the worker preference parameter is
sufficiently small such that there is direct competition between the two firms. We start with firms
using a DQN with experience replay to learn wages, and apply the algorithm to the take-it-or-
leave-it platform and the bidding platform. Afterwards, we explore the DQN without experience
replay for both online labor platforms.

Figure shows the heat map of wages for 100 repetitions for the take-it-or-leave-it (panel (a)) and
for the bidding (panel (b)) online labor platform. With both firms using a DQN with experience
replay they do not learn to collude on either online labor platform. For both platform designs wages
converge to values close to the Nash equilibrium in a vast majority of runs, where the variance of
emerging wages across runs is slightly larger under the take-it-or-leave-it platform design.

While firms applying a DQN with experience replay to set wages do not collude, collusion over
wages emerges if firms use a DQN with experience replay switched off, see Figure 2] For both
online labor platform designs firms in all runs end up setting wages substantially below the Nash
equilibrium wages, and in most runs the emerging wages are very close to the collusive wage of
w{ = w§ = 5.2. As in the case with experience replay, the effect of the platform design on wage
levels is minor. But regardless of the considered platform, the difference in the emerging wage
between the cases where firms use DQN with and without experience replay is striking and highly
significant.

The two panels in Figure [3] show the dynamics of the distribution across runs of greedy wages
(i.e. the wages maximizing the firm’s Q-function) and actual wages (which might be the greedy
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Figure 3: Figure shows greedy wages and wages of firms 1 and 2 over time of simulation for 100
repetitions. Simulation model is take-it-or-leave-it online labor platform with firms applying DQN
with experience replay (a) and without experience replay (b) to set wages. Black line is median.
Upper and lower limit of gray area are 25% and 75% quantiles, respectively.

wage or a random wage) over time for the take-it-or-leave-it online labor platform. With experience
replay, Nash wages are learned after approximately 200,000 iterations. Without experience replay,
collusive wages are learned after approximately 100,000 iterations. Consistently with Figures (a)
and (a), these figures highlight that the variance of emerging wages across runs is substantially
larger without than with experience replay. In particular, without experience replay, apart from
the large majority of runs, which end up close to the fully collusive wage level, there is a small but
positive fraction of runs in which wages emerge, which exhibit partial collusion in the sense that
they are clearly below the Nash equilibrium wages but also substantially above the collusive wage.
For the bidding model, we get similar results, see SI Appendix.

5 Robustness

How robust are our findings, or asking differently, are there other ways for firms to exploit algorith-
mic collusion, apart from using algorithms without experience replay? To explore this question, we
ran various robustness tests.

Figure [4] shows how wage setting changes as more firms are in the market for both online labor
platforms, respectively. Wages of all firms on the market set by their DQN with (left panel) and
without (right panel) experience replay are plotted with the number of firms increasing from two
to five. The Whisker-box-plots show the learned wages for 100 repetitions after 500,000 iterations.
They are compared to the analytical solutions for a duopsony or oligopsonies. Blue lines indicate
collusive wages and red lines Nash wages. While for the DQN with experience replay outcomes are
close to Nash wages regardless of the number of firms competing on the platform, collusion for the
DQN without experience replay breaks down as the number of competitors grows. If four or five
firms are active on the platform, wages converge to a level close to Nash equilibrium also if firms
use a DQN without experience replay.

While collusion is sensitive to the number of firms in the market, i.e. competitive pressure,
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Figure 4: Figure shows wages of all firms with the number of firms in the market varying from two
to five on a take-it-or-leave-it (a) and bidding (b) online labor platform with firms using a DQN
with experience replay (left panel) and without experience replay (right panel). Red lines indicate
Nash wages and blue lines indicate collusive wages.

several other parameter variations yield robust results. We made tasks offered by the firms more
or less heterogeneous from the perspective of the workers, i.e. varied (e), which may also be
interpreted as a measure of competition in the market given the number of firms. We made the
environment in which firms interact more uncertain by introducing a stochastic labor productivity.
We also checked for asymmetric firms. Furthermore, we explored the effect on outcomes of various
parameters relating to the DQN including the learning rate used in the gradient descent, (3, i.e. the
speed with which exploration decays, the number of hidden layers, memory size, and the frequency
of updating of network weights. Our finding that firms do not collude if the algorithm used for
wage setting learns on a broader set of past observations, i.e. uses experience replay, stays robust.
It is also a robust result that the algorithm with no experience replay supports collusive behavior.
Detailed results of these robustness tests are in Appendix [C|

6 Discussion

Collusion of firms on online labor platforms is a possible outcome that may be achieved as firms
use algorithms that do not train on a broader set of past outcomes. Should one be concerned that
algorithms are used, which lead to wages below the equilibrium level on online labor platforms?
Large traffic on online labor platforms suggests that machine learning algorithms have the po-
tential for substantial cost reductions in hiring. They are also faster in making decisions. Thus, on
the one hand, they reduce transaction costs and make matching in labor markets more efficient.
On the other hand, we show that there is the possibility of implicit algorithmic collusion lowering
workers’ wages. However, forbidding algorithmic wage setting to avoid the detrimental effects on
workers would throw the baby out with the bathwater. More so, as we show that algorithms using
experience replay are actually not colluding and more competition moves wages closer to Nash
wages when a DQN without experience replay sets wages. When government agencies are facing
obstacles to increase competition on online labor platforms, a conclusion from our analysis is that
it has to be checked whether the algorithms are apt to collusion. Our findings provide a clear guid-
ance on which properties of the algorithm are crucial in this respect. Firms using algorithms that
during the training phase update their parameters (i.e. the weights in the Q-network) based on a
broader set of past observations are less prone to implicit collusion. The dependence of algorithmic
collusion on features of these algorithms and how they interact with the market environment make



it, however, a very challenging task for anti-trust agencies to regulate firms, see also (Calvano,
Calzolari, Denicold, Harrington Jr and Pastorello, |2020).

Compared to actual online labor platforms our model might be rather simplistic. Nevertheless,
we are able to show that there is the possibility for wage cutting as firms delegate posting tasks
and wages on online labor platforms to algorithms. While there is certainly a lot more to do
with respect to analyzing how particular algorithms operate in different institutional settings, our
analysis highlights that new forms of employment create new challenges for policy concerned with
functioning labor market competition and fair distribution of income.



Appendix

A Duopsony Model

In our analytical formulation of the platform economy, we have two firms (i = 1,2) being located
on the opposite sides of a Salop circle (Salopl, |1979) with circumference 1. The two firms set wages
wy and wey simultaneously to maximize their profits. Profit of firm i is m; = A;L; — w;L;, where L;
is the quantity of labor employed by firm ¢, and A; > 0 is a productivity parameter. In total, there
is a fixed number N of workers uniformly distributed on the Salop circle. A worker with location

*t € [0,1/2] on the Salop circle has utility w;(z*;w;;) = wiy — e - di(z™) from accepting the
task offered by firm ¢ at a wage of w; ;. The function d;(2") measures the disutility of the worker
from carrying out the task offered by firm i, where dy(z7) = Nz™ and do(zt) = N(1/2 — a™).
Utility of not working is normalized to zero, such that the worker accepts the task offered by firm
i if ui (25 wiy) > max[0, uj(@t;w;,)]. We denote the location of the worker, who for given wage
offers is indifferent between accepting task of firm 1 and firm 2, as ™% (wy, ws), i.e. uy (x4 w,) =
uz (™% ws). To determine the Nash equilibrium wages, we focus on the case where e is sufficiently
small such that in equilibrium the indifferent worker has a strictly positive utility. In this case the
labor supply to firm i is given by L; = (w; —w;)/e+N/2 (for simplicity we abstract in our analytical
calculations from the fact that in the simulation the quantity of labor is always an integer). Inserting
the labor supplies into the profit functions and maximizing with respect to the wage of the firm,
yields the firms’ reactions functions. The intersection of the reaction functions yields the Nash
equilibrium wages w} = (24; + A;)/3 — Ne/2. Checking the condition that u;(z"%; w}) > 0 shows
that this wage profile is a Nash equilibrium for all e < & = 2(A; + A2)/(3N).

Collusive wages are determined by choosing w1, ws in order to maximize w1 +mo. Again, focusing
on the case of small values of e, it is easy to see that under collusive wages w$, w§ we must have
u; (™% w¢) = 0 and from this it is directly obtained that w§ = (A; — Aj + eN)/4. These wages
maximize the sum of profits for e < e = (A; + Az)/N. For values of e above this threshold, it is
optimal to set wages such that some workers prefer not to work.

In our baseline specification, we choose parameters A; = Ay = 30, N = 104, e = 0.2, 3 = 6-107°,
w = 2 and w = 23.6 in steps of 0.8. For this parameter setting e < é = O 38 < & = 0.58 and we
obtain Nash equilibrium wages of w} = w} = 19.6 and collusive wages of w{ = w§ = 5.2.

B Details of the DQN in the duopsony environment

@ is the main neural network for firm ¢ with weight vector #;. This network is used to determine
the greedy wages, i.e. the action w; which in a state s; is associated with the largest Q-value, and
updated every period based on experience replay. @ is the target neural network with weight vector
6. Every 71 periods, @ is cloned and the resulting network Q with fixed 6 is used for generating the
Q-learning targets y; for updating network Q. D;; is the array of experiences, used for experience
replay in period t¢:

Dz‘,t = {(SLt—Ta Wi t—T, Tit—T 5 Si,t—T-l—l)v ) (Si,t7 Qi ty Tty Si,t—i-l)}

Parameters are: 77: Frequency of updates of weights in target neural network Q; 7: Memory
size of backward window D;; for experience replay; n™: Size of minibatch sample in experience
replay.

Hyper-parameters of the neural network are set as follows, see also Bengio| (2012)): learning rate
a = 0.01, speed with which exploration decays 8 = 6 - 107°, memory size of backward window is
T = 10°, frequency of network update is 77 = 10%, minibatch size n™ = 32, bias is zero, weight



Algorithm 1 Firm behavior

1: procedure DETERMINESTATE

2 Sit = (Wi—1,wj—1) for take-it-or-leave-it design

3 5it = Wi t—1 for bidding design

4: procedure WAGEOFFER

5: if rnd < ¢ then w;; < random choice

6 else w;; = max,, Q(si ¢, w;6;+)

7: procedure HIRING

8 Workers choose whether to accept wage offer — L;
9

: procedure PROFIT

10: it = AiLip — wi Ly

11: procedure UPDATEQ

12: Add experience (i, Wi, Tit, Sit+1) to Dig—1
13: Drop (sit—7, Wit—7 Tit—T Sip—7+1) from Diyq
14: — backward window D; 4

15: Sample minibatch D" of size n™ from Dy

16: For each {(si;,w;,m, Sz'f—o—l)} €Dy}

17: Set ;1 = miy +ymaxyy Q(si 41, w'; b5 1)
18 and Lig = (yi1 — Qi1 wig; 0ir))”

. c e T m OLi,
19: Average gradient: L, = 1/n ZZG'Dtm; 5
20: 0;.1+1 < gradient descent step using Lat
21: procedure UPDATEQ
22: if t mod 77 = 0 then 91'7,5_5_1 — 9i,t+1

23: procedure UPDATEGREEDYPARAMETER
24: €141 < ete_ﬁ

initialization is Gaussian with mean zero and standard deviation \/1/k, where k is the number of
input nodes. The number of hidden layers equals two. For the bidding model the first layer has
k = 1 and for the take-it-or-leave-it model the first layer has kK = 2. The number of output nodes
is equal to the grid size of wages. The number of nodes of the first hidden layer equals 2/3 times
the sum of input and output nodes. The number of nodes for the second layer equals 3/2 times the
sum of input and output nodes. Activation functions: logistic for hidden layers, identity for output
layer. Inputs are normalized to the interval [0,1], rewards are scaled by a factor of 1073. In the
runs with experience replay switched off we set 7 = n™ = 1.

10



C Robustness

C.1 Strength of worker preference and monopsony wage

Figure 5: Effect of strength of worker preference (e) on wages
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Notes: Figure shows Whisker-box-plots for wages of firms 1 and 2 as a function of the strength of
worker preferences (e). Upper row shows the cases for the take-it-or-leave-it online labor platform.
Lower row shows the cases for the bidding online labor platform. Red dashed lines are the Nash
wages and blue dashed lines are the collusive wages according to the analytical solution. For e >
€ = 0.38 we are in the local monopsony scenario and the Nash equilibrium wages coincide with the
collusive wages (see Appendix. For e > € = 0.58 it is optimal for the firms to choose wages such
that some workers prefer not to work and optimal wages are given by w} = wl-C = A;/2. The figure
shows that DQN with experience replay persistently yields wages close to the Nash equilibrium
wages, whereas without experience replay they are close to collusive wages. For e > € = 0.38, i.e.
the local monopsony case for which firms do not directly compete for workers, the DQN finds the
monopsony wage for both online labor platforms with and without experience replay.
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C.2 Stochastic environment

Figure 6: Stochastic labor productivity (A)
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Notes: Figure shows Whisker-box-plots for wages of firm 1 (left) and 2 (right), respectively. Labor
productivity A; = Ao = A is drawn from a uniform distribution varying the upper and lower limit
of the maximum deviation from a mean (and baseline) of A = 30. Upper row shows the cases for the
take-it-or-leave-it online labor platform. Lower row shows the cases for the bidding online labor
platform. Red Whisker-boxes relate to algorithmic wage setting with experience replay. Green
Whisker-boxes relate to algorithmic wage setting without experience replay. Dashed red lines and
dashed blue lines indicate Nash wages and collusive wages of analytic model, respectively. We get
Nash wages in the settings with experience replay and collusion in the settings without experience
replay.
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C.3 Asymmetric productivities

Figure 7: Asymmetric productivities
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Notes: Figure shows Whisker-box-plots for wages of firm 1 (left) and 2 (right), respectively. Labor
productivity of the two firms is given by A; = (1 —q)-30, A2 = (1 + q) - 30 with ¢ varying between
0 and 0.2 (our baseline in the paper corrseponds to ¢ = 0). Upper row shows the cases for the
take-it-or-leave-it online labor platform. Lower row shows the cases for the bidding online labor
platform. Red Whisker-boxes relate to algorithmic wage setting with experience replay. Green
Whisker-boxes relate to algorithmic wage setting without experience replay. Dashed red lines and
dashed blue lines indicate Nash wages and collusive wages of analytic model, respectively. We get
Nash wages in the settings with experience replay and collusion in the settings without experience
replay.
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C.4 Learning rate

Figure 8: Learning rate
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Notes: Figure shows Whisker-box-plots for wages of firm 1 (left) and 2 (right), respectively. Learn-
ing rate « of the gradient descent is varied from 0.001 to 0.1 (baseline is & = 0.01). Upper row
shows the cases for the take-it-or-leave-it online labor platform. Lower row shows the cases for the
bidding online labor platform. Red Whisker-boxes relate to algorithmic wage setting with expe-
rience replay. Green Whisker-boxes relate to algorithmic wage setting without experience replay.
Dashed red lines and dashed blue lines indicate Nash wages and collusive wages of analytic model,
respectively. We get Nash wages in the settings with experience replay and below Nash wages
without experience replay.
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C.5 Memory size

Figure 9: Memory size (T) and frequency of updating (TT)
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Notes: Figure shows Whisker-box-plots for wages of firm 1 (left) and 2 (right), respectively. Memory
size and frequency of updating is varied (baselines are 100,000 for memory size and 10,000 for
frequency update). Upper row shows the cases for the take-it-or-leave-it online labor platform.
Lower row shows the cases for the bidding online labor platform. Dashed red lines and dashed blue
lines indicate Nash wages and collusive wages of analytic model, respectively. We get Nash wages
for high frequencies of updating and below Nash wages for low frequencies of updating if memory
size is low. Wages are always well above the collusive wage.
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C.6 Hidden layers

Figure 10: Hidden layers
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Notes: Figure shows Whisker-box-plots for wages of firm 1 (left) and 2 (right), respectively. Number
of hidden layers is altered (baseline is two). Upper row shows the cases for the take-it-or-leave-it
online labor platform. Lower row shows the cases for the bidding online labor platform. Red
Whisker-boxes relate to algorithmic wage setting with experience replay. Green Whisker-boxes
relate to algorithmic wage setting without experience replay. Dashed red lines and dashed blue
lines indicate Nash wages and collusive wages of analytic model, respectively. We get Nash wages
in the settings with experience replay and below Nash wages without experience replay. With two
hidden layers algorithmic wages are closer to collusive wage .
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C.7 [ — speed with which exploration decays

Figure 11: 8 — speed with which exploration decays

m

66-06 3.36-05 6¢-05 8.76-05  6¢-06 3.36-05 6e-05 8.76-05 66-06 3.36-05 6e-05 8.76-05  6e-06 3.36-05 6e-05 8.76-05
beta ta

() (b)

Ep No Exp No

62-06 3.36-05 62-05 8.76-05  6e-06 3.3¢-05 6e-05 8.76-05 62-06 3.3¢-05 66-05 8.76-05  6e-06 3.3¢-05 6e-05 8.76-05
beta et

() (d)

Notes: Figure shows Whisker-box-plots for wages of firm 1 (left) and 2 (right), respectively. Speed
with which exploration decays is varied (baseline is 3 = 6-1075). Upper row shows the cases for the
take-it-or-leave-it online labor platform. Lower row shows the cases for the bidding online labor
platform. Red Whisker-boxes relate to algorithmic wage setting with experience replay. Green
Whisker-boxes relate to algorithmic wage setting without experience replay. Dashed red lines and
dashed blue lines indicate Nash wages and collusive wages of analytic model, respectively. We get
Nash wages in the settings with experience replay and collusion without experience replay.
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C.8 Time series for bidding model

Figure 12: Time series for greedy wage and actual wage (bidding model)
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Notes: Figure shows greedy wages and actual wages of firms 1 and 2 over duration of simulation
for 100 repetitions. Simulation model is bidding online labor platform with firms applying DQN
with experience replay (a) and without experience replay (b) to set wages. Black line is median.
Upper and lower limit of gray area are 25% and 75% quantiles, respectively. We observe that
the algorithms learn Nash wages after approximately 350,000 iterations and collusive wages after
approximately 100,000 iterations.

Data Availability

Code has been deposited in GitHub. https://github.com/ETACE/AI_Labormarket
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