Titelaufnahme

Titel
Convex semigroups on Banach lattices / Robert Denk, Michael Kupper and Max Nendel
VerfasserDenk, Robert ; Kupper, Michael ; Nendel, Max
ErschienenBielefeld, Germany : Center for Mathematical Economics (IMW), Bielefeld University, September 2019
Umfang1 Online-Ressource (35 Seiten)
Serie
Schlagwörter (GND)Hamilton-Jacobi-Differentialgleichung / Cauchy-Anfangswertproblem
URNurn:nbn:de:hbz:6:2-121925 
Zugänglichkeit
 Das Dokument ist öffentlich im Netz zugänglich.
Dateien
Zusammenfassung

In this paper, we investigate convex semigroups on Banach lattices. First, we consider the case, where the Banach lattice is σ-Dedekind complete and satisfies a monotone convergence property, having Lp-spaces in mind as a typical application. Second, we consider monotone convex semigroups on a Banach lattice, which is a Riesz subspace of a σ-Dedekind complete Banach lattice, where we consider the space of bounded uniformly continuous functions as a typical example. In both cases, we prove the invariance of a suitable domain for the generator under the semigroup. As a consequence, we obtain the uniqueness of the semigroup in terms of the generator. The results are discussed in several examples such as semilinear heat equations (g-expectation), nonlinear integro-differential equations (uncertain compound Poisson processes), fully nonlinear partial differential equations (uncertain shift semigroup and G-expectation).

Klassifikation
Links
Nachweis
Statistik
Das PDF-Dokument wurde 55 mal heruntergeladen.
Nutzungshinweis
Das Medienwerk ist im Rahmen des deutschen Urheberrechts nutzbar.