Titelaufnahme

Titel
K-depth tests for testing simultaneously independence and other model assumptions in time series / Hendrik Dohme, Dennis Malcherczyk, Kevin Leckey, Christine Müller
VerfasserDohme, Hendrik ; Malcherczyk, Dennis ; Leckey, Kevin ; Müller, Christine H.
KörperschaftSonderforschungsbereich Statistical Modelling of Nonlinear Dynamic Processes
Erschienen[Dortmund] : SFB 823, 2021
Umfang1 Online-Ressource (23 Seiten) Diagramme
Serie
Schlagwörter (GND)Simulation / Regressionsanalyse / Lineares Regressionsmodell
URNurn:nbn:de:hbz:6:2-1565011 
DOI10.17877/DE290R-22418 
Zugänglichkeit
 Das Dokument ist öffentlich im Netz zugänglich.
Dateien
Zusammenfassung

We consider the recently developed K-depth tests for testing simultaneously independence and other model assumptions for univariate time series with a potentially related d-dimensional process of explanatory variables. Since these tests are based only on signs of residuals, they are easy to comprehend. They can be used in a full version and in a simplified version. While former investigations already showed that the full version is appropriate for testing model assumptions, we concentrate here on either testing the independence assumption on its own or on simultaneously testing independence- and model assumptions with both types of tests. In an extensive simulation study, we compare these tests with several known independence test such as the runs test, the Durbin-Watson test, and the Von-Neumann-Rank-Ratio test. Finally, we demonstrate how the K-depth tests can be used for improved modelling of crack width time series depending on temperature measurements in a bridge monitoring.

Klassifikation
Links
Nachweis
Statistik
Das PDF-Dokument wurde 53 mal heruntergeladen.
Nutzungshinweis
Das Medienwerk ist im Rahmen des deutschen Urheberrechts nutzbar.