Titelaufnahme

Titel
Approximation and error analysis of forward-backward SDEs driven by general Lévy processes using shot noise series representations / Till Massing
VerfasserMassing, Till Philipp Georg
KörperschaftSonderforschungsbereich Statistical Modelling of Nonlinear Dynamic Processes
Erschienen[Dortmund] : SFB 823, 2021
Umfang1 Online-Ressource (25 Seiten)
Serie
Schlagwörter (GND)Stochastik / Differentialgleichung / Lévy-Prozess
URNurn:nbn:de:hbz:6:2-1574824 
DOI10.17877/DE290R-22446 
Zugänglichkeit
 Das Dokument ist öffentlich im Netz zugänglich.
Dateien
Zusammenfassung

We consider the simulation of a system of decoupled forward-backward stochastic differential equations (FBSDEs) driven by a pure jump Lévy process L and an independent Brownian motion B. We allow the Lévy process L to have an infinite jump activity. Therefore, it is necessary for the simulation to employ a finite approximation of its Lévy measure. We use the generalized shot noise series representation method by Rosinski (2001) to approximate the driving Lévy process L. We compute the Lp error, p > 2, between the true and the approximated FBSDEs which arises from the finite truncation of the shot noise series (given sufficient conditions for existence and uniqueness of the FBSDE). We also derive the Lp error between the true solution and the discretization of the approximated FBSDE using an appropriate backward Euler scheme.

Klassifikation
Links
Nachweis
Statistik
Das PDF-Dokument wurde 52 mal heruntergeladen.
Nutzungshinweis
Das Medienwerk ist im Rahmen des deutschen Urheberrechts nutzbar.